The number of honey bee colonies in the United States has declined to half of its peak level in the 1940s, and colonies lost over the winter have reached levels that are becoming economically unstable. While the causes of these losses are numerous and the interaction between them is very complex, the role of insecticides has garnered much attention. As a result, there is a need to better understand the risk of insecticides to bees, leading to more studies on both toxicity and exposure. While much research has been conducted on insecticides and bees, there have been very limited studies to elucidate the role that bee genotype and age has on the toxicity of these insecticides. The goal of this study was to determine if there are differences in insecticide sensitivity between honey bees of different genetic backgrounds (Carniolan, Italian, and Russian stocks) and assess if insecticide sensitivity varies with age. We found that Italian bees were the most sensitive of these stocks to insecticides, but variation was largely dependent on the class of insecticide tested. There were almost no differences in organophosphate bioassays between honey bee stocks (<1-fold), moderate differences in pyrethroid bioassays (1.5 to 3-fold), and dramatic differences in neonicotinoid bioassays (3.4 to 33.3-fold). Synergism bioassays with piperonyl butoxide, amitraz, and coumaphos showed increased phenothrin sensitivity in all stocks and also demonstrated further physiological differences between stocks. In addition, as bees aged, the sensitivity to phenothrin significantly decreased, but the sensitivity to naled significantly increased. These results demonstrate the variation arising from the genetic background and physiological transitions in honey bees as they age. This information can be used to determine risk assessment, as well as establishing baseline data for future comparisons to explain the variation in toxicity differences for honey bees reported in the literature.
Background. The age of an insect strongly influences many aspects of behavior and reproduction. The interaction of age and behavior is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of a set of individual honey bees would be an important measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees.Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Bees of known ages were also sampled from colonies with normal demographics. Nurses and foragers were collected every 3–5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods.Results. Our analysis showed that pteridine levels significantly increased with age in a linear manner in both single cohort colonies and colonies with normal demography. Pteridine levels were higher in foragers than nurses of the same age in bees from single cohort colonies. Head weight significantly increased with age until approximately 28-days of age and then declined for both nurse and forager bees in single cohort colonies. A similar pattern of head weight in bees from colonies with normal demography was observed but head weight was highest in 8-day old nurse bees and there was no relationship of head weight with age of foragers.Discussion. Although the relationship between pteridine levels and age was significant, variation in the data yielded a +4-day range in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager in colonies with altered demographics as in the case of single cohort colonies. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing the age of an insect. Future studies utilizing these methods will provide a more holistic view of colony health.
Background. The age of an insect strongly influences many aspects of behavior and reproduction. This interaction is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and is driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of an individual honey bee would be important to provide a measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Nurses and foragers were collected every 3-5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels were higher in foragers than nurses of the same age, and pteridine levels significantly increased with age in a linear manner. Head weight significantly varied with age increasing until approximately 28 days of age, then declining thereafter for both nurse and forager bees. Discussion. Although the relationship between pteridine levels and age was significant, a large amount of variation in the data yielded an 8-day window in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing colony demography after a colony experiences a stress event. Future studies utilizing these methods will provide a more holistic view of colony health.
Background. The age of an insect strongly influences many aspects of behavior and reproduction. This interaction is epitomized in the temporal polyethism of honey bees in which young adult bees perform nurse and maintenance duties within the colony, while older bees forage for nectar and pollen. Task transition is dynamic and is driven by colony needs. However, an abundance of precocious foragers or overage nurses may have detrimental effects on the colony. Additionally, honey bee age affects insecticide sensitivity. Therefore, determining the age of an individual honey bee would be important to provide a measurement of colony health. Pteridines are purine-based pigment molecules found in many insect body parts. Pteridine levels correlate well with age, and wild caught insects may be accurately aged by measuring pteridine levels. The relationship between pteridines and age varies with a number of internal and external factors among many species. Thus far, no studies have investigated the relationship of pteridines with age in honey bees. Methods. We established single-cohort colonies to obtain age-matched nurse and forager bees. Nurses and foragers were collected every 3-5 days for up to 42 days. Heads were removed and weighed before pteridines were purified and analyzed using previously established fluorometric methods. Results. Our analysis showed that pteridine levels were higher in foragers than nurses of the same age, and pteridine levels significantly increased with age in a linear manner. Head weight significantly varied with age increasing until approximately 28 days of age, then declining thereafter for both nurse and forager bees. Discussion. Although the relationship between pteridine levels and age was significant, a large amount of variation in the data yielded an 8-day window in age estimation. This allows an unambiguous method to determine whether a bee may be a young nurse or old forager. Pteridine levels in bees do not correlate with age as well as in other insects. However, most studies used insects reared under tightly controlled laboratory conditions, while we used free-living bees. The dynamics of head weight change with age is likely to be due to growth and atrophy of the hypopharyngeal glands. Taken together, these methods represent a useful tool for assessing colony demography after a colony experiences a stress event. Future studies utilizing these methods will provide a more holistic view of colony health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.