The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H ؉ -Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter- -glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is  -glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1 . Thus, PHO1 defines a novel class of proteins involved in ion transport in plants. INTRODUCTIONThe radial movement of ions from root epidermal and cortical cells to the xylem can be mediated by two major pathways. In the apoplastic pathway, ions move radially toward the stele through the extracellular space, whereas in the symplastic pathway, ions move intracellularly from cell to cell via plasmodesmata (Bowling, 1981;Clarkson, 1993). Although a third pathway is possible, namely, one in which ions move from cell to cell through a successive uptake and release of ions from and into the extracellular space, the high energy requirement of this pathway makes it unlikely to play a major role in ion transport to the xylem.The movement of ions and water through the apoplast of the root is blocked at the level of the endoderm by the Casparian strip, a zone in which the cell wall is impregnated with hydrophobic compounds such as suberin and lignin. Thus, passage of ions beyond the Casparian strip and toward the stele must proceed via the symplasm. Once in the cells of the stele, the release of ions into the xylem requires their efflux out of the stelar cells. Thus, radial transport of ions from the external solution to the xylem requires a minimum of two passages across the plasma membrane, once for the uptake of ions into the epidermal, cortical, or outer surface of the endodermal cells, and then again for the efflux of ions out of the stelar cells before entering the xylem vessel (Bowling, 1981;Clarkson, 1993).The uptake of anions such as Pi into a cell is an energyrequiring process. The negatively charged phosphate ion (HPO 4 Ϫ 2 or H 2 PO 4 Ϫ ) must move against an electrical gradient, the interior of the cell being negatively charged ( ف Ϫ 100 mV), as well as against a concentration gradient, the intracellular concentration of Pi being 1000 to 10,000 times higher than the extracellular concentration (the concentration of P...
The plant cuticle composed of cutin, a lipid-derived polyester, and cuticular waxes covers the aerial portions of plants and constitutes a hydrophobic extracellular matrix layer that protects plants against environmental stresses. The botrytis-resistant 1 (bre1) mutant of Arabidopsis reveals that a permeable cuticle does not facilitate the entry of fungal pathogens in general, but surprisingly causes an arrest of invasion by Botrytis. BRE1 was identified to be long-chain acyl-CoA synthetase2 (LACS2) that has previously been shown to be involved in cuticle development and was here found to be essential for cutin biosynthesis. bre1/lacs2 has a five-fold reduction in dicarboxylic acids, the typical monomers of Arabidopsis cutin. Comparison of bre1/lacs2 with the mutants lacerata and hothead revealed that an increased permeability of the cuticle facilitates perception of putative elicitors in potato dextrose broth, leading to the presence of antifungal compound(s) at the surface of Arabidopsis plants that confer resistance to Botrytis and Sclerotinia. Arabidopsis plants with a permeable cuticle have thus an altered perception of their environment and change their physiology accordingly.
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the -oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.
Expanding previous studies of human cerebral cortical sexual dimorphism showing higher neuronal densities in males, we investigated whether gender differences also exist in the extent of neuropil, size of neuronal somata, and volumes of astrocytes. This histo-morphometric study includes select autopsy brains of 6 males and 5 females, 12 to 24 yr old. In each brain, 86 defined loci were analyzed for cortical thickness, neuronal and astrocytic (8 loci) density (stereological counts), and neuronal and astrocytic (8 loci) soma size, enabling calculations of neuropil and astrocytic volumes. The female group showed significantly larger neuropil volumes than males, whereas neuronal soma size and astrocytic volumes did not differ. The expanded data confirmed higher neuronal densities in males than in females without a gender difference in cortical thickness. These findings indicate that fundamental gender differences exist in the structure of the human cerebral cortex, with more numerous, smaller neuronal units in men and fewer, larger ones in women; they may underlie gender-specific abilities and susceptibilities to disease affecting the neocortex. Laterality differences between the sexes were restricted to neuronal soma size showing significantly larger values in the female group in the left hemisphere. This gender difference may support female's right-handedness, language advantage, and tendency for bilateral activation patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.