GABAA-receptors display an extensive structural heterogeneity based on the differential assembly of a family of at least 15 subunits (alpha 1-6, beta 1-3, gamma 1-3, delta, rho 1-2) into distinct heteromeric receptor complexes. The subunit composition of receptor subtypes is expected to determine their physiological properties and pharmacological profiles, thereby contributing to flexibility in signal transduction and allosteric modulation. In heterologous expression systems, functional receptors require a combination of alpha-, beta-, and gamma-subunit variants, the gamma 2-subunit being essential to convey a classical benzodiazepine site to the receptor. The subunit composition and stoichiometry of native GABAA-receptor subtypes remain unknown. The aim of this study was to identify immunohistochemically the main subunit combinations expressed in the adult rat brain and to allocate them to identified neurons. The regional and cellular distribution of seven major subunits (alpha 1, alpha 2, alpha 3, alpha 5, beta 2,3, gamma 2, delta) was visualized by immunoperoxidase staining with subunit-specific antibodies (the beta 2- and beta 3-subunits were covisualized with the monoclonal antibody bd-17). Putative receptor subtypes were identified on the basis of colocalization of subunits within individual neurons, as analyzed by confocal laser microscopy in double- and triple-immunofluorescence staining experiments. The results reveal an extraordinary heterogeneity in the distribution of GABAA-receptor subunits, as evidenced by abrupt changes in immunoreactivity along well-defined cytoarchitectonic boundaries and by pronounced differences in the cellular distribution of subunits among various types of neurons. Thus, functionally and morphologically diverse neurons were characterized by a distinct GABAA-receptor subunit repertoire. The multiple staining experiments identified 12 subunit combinations in defined neurons. The most prevalent combination was the triplet alpha 1/beta 2,3/gamma 2, detected in numerous cell types throughout the brain. An additional subunit (alpha 2, alpha 3, or delta) sometimes was associated with this triplet, pointing to the existence of receptors containing four subunits. The triplets alpha 2/beta 2,3/gamma 2, alpha 3/beta 2,3/gamma 2, and alpha 5/beta 2,3/gamma 2 were also identified in discrete cell populations. The prevalence of these seven combinations suggest that they represent major GABAA-receptor subtypes. Five combinations also apparently lacked the beta 2,3-subunits, including one devoid of gamma 2-subunit (alpha 1/alpha 2/gamma 2, alpha 2/gamma 2, alpha 3/gamma 2, alpha 2/alpha 3/gamma 2, alpha 2/alpha 5/delta).(ABSTRACT TRUNCATED AT 400 WORDS)
GABA(A) (gamma-aminobutyric acid(A)) receptors are molecular substrates for the regulation of vigilance, anxiety, muscle tension, epileptogenic activity and memory functions, which is evident from the spectrum of actions elicited by clinically effective drugs acting at their modulatory benzodiazepine-binding site. Here we show, by introducing a histidine-to-arginine point mutation at position 101 of the murine alpha1-subunit gene, that alpha1-type GABA(A) receptors, which are mainly expressed in cortical areas and thalamus, are rendered insensitive to allosteric modulation by benzodiazepine-site ligands, whilst regulation by the physiological neurotransmitter gamma-aminobutyric acid is preserved. alpha1(H101R) mice failed to show the sedative, amnesic and partly the anticonvulsant action of diazepam. In contrast, the anxiolytic-like, myorelaxant, motor-impairing and ethanol-potentiating effects were fully retained, and are attributed to the nonmutated GABA(A) receptors found in the limbic system (alpha2, alpha5), in monoaminergic neurons (alpha3) and in motoneurons (alpha2, alpha5). Thus, benzodiazepine-induced behavioural responses are mediated by specific GABA(A) receptor subtypes in distinct neuronal circuits, which is of interest for drug design.
Most fast inhibitory neurotransmission in the brain is mediated by GABAA receptors, which are mainly postsynaptic and consist of diverse alpha and beta subunits together with the gamma 2 subunit. Although the gamma 2 subunit is not necessary for receptor assembly and translocation to the cell surface, we show here that it is required for clustering of major postsynaptic GABAA receptor subtypes. Loss of GABAA receptor clusters in mice deficient in the gamma 2 subunit, and in cultured cortical neurons from these mice, is paralleled by loss of the synaptic clustering molecule gephyrin and synaptic GABAergic function. Conversely, inhibiting gephyrin expression causes loss of GABAA receptor clusters. The gamma 2 subunit and gephyrin are thus interdependent components of the same synaptic complex that is critical for postsynaptic clustering of abundant subtypes of GABAA receptors in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.