Necroptosis is considered to be complementary to the classical caspase-dependent programmed cell death pathway, apoptosis. The pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) is an essential effector protein in the necroptotic cell death pathway downstream of the protein kinase Receptor Interacting Protein . How MLKL causes cell death is unclear, however RIPK3-mediated phosphorylation of the activation loop in MLKL trips a molecular switch to induce necroptotic cell death. Here, we show that the MLKL pseudokinase domain acts as a latch to restrain the N-terminal four-helix bundle (4HB) domain and that unleashing this domain results in formation of a high-molecularweight, membrane-localized complex and cell death. Using alaninescanning mutagenesis, we identified two clusters of residues on opposing faces of the 4HB domain that were required for the 4HB domain to kill cells. The integrity of one cluster was essential for membrane localization, whereas MLKL mutations in the other cluster did not prevent membrane translocation but prevented killing; this demonstrates that membrane localization is necessary, but insufficient, to induce cell death. Finally, we identified a small molecule that binds the nucleotide binding site within the MLKL pseudokinase domain and retards MLKL translocation to membranes, thereby preventing necroptosis. This inhibitor provides a novel tool to investigate necroptosis and demonstrates the feasibility of using small molecules to target the nucleotide binding site of pseudokinases to modulate signal transduction.pseudoenzyme | RIP kinase | ATP mimetic | programmed necrosis P rogrammed necrosis or "necroptosis" has emerged in the past 5 years as a cell death mechanism that complements the conventional cell death pathway, apoptosis, in multicellular organisms. In contrast to apoptosis, necroptosis does not appear to serve an important role in multicellular organism development (1-3) but participates in the defense against pathogens and is a likely culprit in destructive inflammatory conditions (4-7). Receptor Interacting Protein Kinase-3 (RIPK3) was identified as a key effector of necroptosis in 2009 (4, 5) and its substrate, the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL), in 2012 (8, 9), but the molecular events following RIPK3-mediated phosphorylation of MLKL required to induce cell death are unclear. The RIPK1/ RIPK3/MLKL necrosome has been proposed to activate PGAM5 (phosphoglycerate mutase 5) and Drp1 (Dynamin-related protein 1) to cause mitochondrial fragmentation and cell death (10), but the requirement for PGAM5, Drp1, and mitochondria for necroptosis has been questioned (1, 11-13).We described the structure of mouse MLKL revealing that MLKL contains a C-terminal pseudokinase domain and an N-terminal four-helix bundle (4HB) domain connected by a two-helix linker (the "brace" helices) (1). Based on our mutational and biochemical analyses, we proposed that the catalytically inactive pseudokinase domain functions as a molecular switch and that RIPK3-mediated phosphorylat...
There is now compelling preclinical data demonstrating BET inhibition as a strategy to target processes known to be involved in disease development and progression with clinical trials of two bona fide BET inhibitors now underway. Patent activity in this area is increasing with initial activity focused on variations to reported BET inhibitors and more recent patents disclosing novel chemotypes as BET inhibitors.
The ancestral origins of the lytic cell death mode, necroptosis, lie in host defense. However, the dysregulation of necroptosis in inflammatory diseases has led to widespread interest in targeting the pathway therapeutically. This mode of cell death is executed by the terminal effector, the MLKL pseudokinase, which is licensed to kill following phosphorylation by its upstream regulator, RIPK3 kinase. The precise molecular details underlying MLKL activation are still emerging and, intriguingly, appear to mechanistically-diverge between species. Here, we report the structure of the human RIPK3 kinase domain alone and in complex with the MLKL pseudokinase. These structures reveal how human RIPK3 structurally differs from its mouse counterpart, and how human RIPK3 maintains MLKL in an inactive conformation prior to induction of necroptosis. Residues within the RIPK3:MLKL C-lobe interface are crucial to complex assembly and necroptotic signaling in human cells, thereby rationalizing the strict species specificity governing RIPK3 activation of MLKL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.