BackgroundA chikungunya virus outbreak of unprecedented magnitude is currently ongoing in Indian Ocean territories. In Réunion Island, this alphavirus has already infected about one-third of the human population. The main clinical symptom of the disease is a painful and invalidating poly-arthralgia. Besides the arthralgic form, 123 patients with a confirmed chikungunya infection have developed severe clinical signs, i.e., neurological signs or fulminant hepatitis.Methods and FindingsWe report the nearly complete genome sequence of six selected viral isolates (isolated from five sera and one cerebrospinal fluid), along with partial sequences of glycoprotein E1 from a total of 127 patients from Réunion, Seychelles, Mauritius, Madagascar, and Mayotte islands. Our results indicate that the outbreak was initiated by a strain related to East-African isolates, from which viral variants have evolved following a traceable microevolution history. Unique molecular features of the outbreak isolates were identified. Notably, in the region coding for the non-structural proteins, ten amino acid changes were found, four of which were located in alphavirus-conserved positions of nsP2 (which contains helicase, protease, and RNA triphosphatase activities) and of the polymerase nsP4. The sole isolate obtained from the cerebrospinal fluid showed unique changes in nsP1 (T301I), nsP2 (Y642N), and nsP3 (E460 deletion), not obtained from isolates from sera. In the structural proteins region, two noteworthy changes (A226V and D284E) were observed in the membrane fusion glycoprotein E1. Homology 3D modelling allowed mapping of these two changes to regions that are important for membrane fusion and virion assembly. Change E1-A226V was absent in the initial strains but was observed in >90% of subsequent viral sequences from Réunion, denoting evolutionary success possibly due to adaptation to the mosquito vector.ConclusionsThe unique molecular features of the analyzed Indian Ocean isolates of chikungunya virus demonstrate their high evolutionary potential and suggest possible clues for understanding the atypical magnitude and virulence of this outbreak.
IntroductionClinical conditions that induce impaired cell-mediated immunity like AIDS, malignancy, and immunosuppressive therapy result in impaired MHC class II-mediated delayed-type hypersensitivity (DTH) reaction (1, 2). Moreover, long-standing clinical observations have established that certain diseases that do not induce a generalized immunosuppressive state, also induce impaired DTH reaction to specific antigens, a state clinically defined as "anergy." Classical paradigms of these diseases include tuberculosis (TB), sarcoidosis, and Hodgkin's disease.TB is the leading cause of death from infectious diseases worldwide (3), accounting for eight million new cases and three million deaths annually (6). The lethality of TB is due to both the absence of an effective vaccine and to the poor understanding of how the mycobacteria escape immune surveillance. Anergy in the setting of TB refers to the paradoxical absence of dermal reactivity to intradermal injection with tuberculin purified protein derivative (PPD) in infected persons. It occurs in about 15% of patients with active pulmonary disease and is associated with absence of granuloma formation and all other manifestations of cellular hypersensitivity (3-5). We thus chose to examine the biochemical events that regulate the induction of TB anergy since this understanding may also provide insights into the pathophysiology of this disease.Anergy in vitro and its in vivo counterpart, tolerance, are immunologically defined as the inability of antigenspecific T cells to produce IL-2 and clonally expand on rechallenge with fully competent antigen-presenting cells (APC) (7,8). Induction of anergy is an active signaling process induced when T-cell receptor (TCR) is ligated by antigen without costimulation. Anergy can also be induced in the presence of costimulation if the TCR is ligated by superantigen or by altered peptide ligands that bear a single amino acid substitution in the sequence of the agonistic peptide (9). Although quite distinct, these three approaches to induce anergy appear to share common biochemical events characterized by hypophosphorylation of TCRζ and defective activation of ZAP-70 and Ras (10-15), indicating the generalized significance of these findings in the anergic state. Recently, IL-10 in The lethality of Mycobacterium tuberculosis remains the highest among infectious organisms and is linked to inadequate immune response of the host. Containment and cure of tuberculosis requires an effective cell-mediated immune response, and the absence, during active tuberculosis infection, of delayedtype hypersensitivity (DTH) responses to mycobacterial antigens, defined as anergy, is associated with poor clinical outcome. To investigate the biochemical events associated with this anergy, we screened 206 patients with pulmonary tuberculosis and identified anergic patients by their lack of dermal reactivity to tuberculin purified protein derivative (PPD). In vitro stimulation of T cells with PPD induced production of IL-10, IFN-γ, and proliferation in PPD +...
Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV.
We conducted a survey in Cambodia in 2000 on henipavirus infection among several bat species, including flying foxes, and persons exposed to these animals. Among 1,072 bat serum samples tested by enzyme-linked immunosorbent assay, antibodies reactive to Nipah virus (NiV) antigen were detected only in Pteropus lylei species; Cynopterus sphinx, Hipposideros larvatus, Scotophilus kuhlii, Chaerephon plicata, Taphozous melanopogon, and T. theobaldi species were negative. Seroneutralization applied on a subset of 156 serum samples confirmed these results. None of the 8 human serum samples was NiV seropositive with the seroneutralization test. One virus isolate exhibiting cytopathic effect with syncytia was obtained from 769 urine samples collected at roosts of P. lylei specimens. Partial molecular characterization of this isolate demonstrated that it was closely related to NiV. These results strengthen the hypothesis that flying foxes could be the natural host of NiV. Surveillance of human cases should be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.