Multifunctional molecular ferroelectrics are exciting materials synthesized using molecular chemistry concepts, which may combine a spontaneous electrical polarization, switched upon applying an electric field, with another physical property. A high-temperature ferroelectric material is presented that is based on a chiral Zn(2+) /Dy(3+) complex exhibiting Dy(3+) luminescence, optical activity, and magnetism. We investigate the correlations between the electric polarization and the crystal structure as well as between the low-temperature magnetic slow relaxation and the optical properties.
Magnetoelectric (ME) materials combine magnetic and electric polarizabilities in the same phase, offering a basis for developing high-density data storage and spintronic or low-consumption devices owing to the possibility of triggering one property with the other. Such applications require strong interaction between the constitutive properties, a criterion that is rarely met in classical inorganic ME materials at room temperature. We provide evidence of a strong ME coupling in a paramagnetic ferroelectric lanthanide coordination complex with magnetostrictive phenomenon. The properties of this molecular material suggest that it may be competitive with inorganic magnetoelectrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.