International audienceWith the increased popularity of touch-sensitive surfaces, much attention has been drawn to their security-related issues, as they currently rely only on the visual sense for feedback. To improve operability, vibrotactile signals may be delivered to the finger on screen interaction. The way vibrotactile signals affect human perception is examined via three measured variables, related to their energy, velocity, and spectral complexity, and which are analytically defined in this paper. It is shown that these variables accurately account for the psychophysical properties of the tactile sense. Based on this, a psychophysical fuzzy rule-based model of vibrotactile perception is introduced to forecast the comfort values of the vibrational signals provided by an automobile haptic screen. Using an efficient rule-based generation method, a Mamdani fuzzy inference system is proposed; it achieves a mean error rate of 14% for the train set and 17% for the test set, while correctly classifying most of the signals within a reasonable tolerance, related to human evaluation imprecision. The system also produces a comprehensible linguistic rule structure, which allows behavioral patterns to be detected
International audienceNowadays tactile surfaces are slowly replacing the mechanical interfaces of our electronic devices, and the actual trend is toward a quasi-total touch interaction. This transition has however one important side effect, i.e the lack of feedback from the device, which in certain situations can be crucial. In order to overcome this, it has been suggested that feedback has to be delivered to the finger through vibrations that should be both detectable and comfortable. This paper aims to define a perception model for the sensory evaluations of the vibrotactile signals using fuzzy set theory. First of all, the hypothesis that haptic perception is strongly related to physical characteristics of the signals was evaluated and confirmed with a 93% correlation rate, based on psychophysical studies of the tactile sense. Secondly, using the previous analysis as a knowledge base we have implemented a fuzzy inference system which forecasts the preference values for vibrotactile signals. The preliminary results show that for 15 out of 18 signals, the preference is correctly predicted within a reasonable uncertainty interval
International audienceHaptic feedback is currently emerging as a feasible solution to cope with the security-related issues of automobile touch-screen displays, and at the same time to improve users satisfaction and quality of use. Therefore, we have developed a fuzzy symbolic model of haptic perception for automobile interfaces in cooperation with an automotive ergonomics expert. The model predicts the induced comfort degree of the haptic effects based on their ergonomic properties, and achieves, on a set of 48 haptic patterns , a global error rate of 14.6% and a compatibility rate of 89.6% with the expert evaluations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.