Neural speech synthesis models have recently demonstrated the ability to synthesize high quality speech for text-to-speech and compression applications. These new models often require powerful GPUs to achieve real-time operation, so being able to reduce their complexity would open the way for many new applications. We propose LPCNet, a WaveRNN variant that combines linear prediction with recurrent neural networks to significantly improve the efficiency of speech synthesis. We demonstrate that LPCNet can achieve significantly higher quality than WaveRNN for the same network size and that high quality LPCNet speech synthesis is achievable with a complexity under 3 GFLOPS. This makes it easier to deploy neural synthesis applications on lower-power devices, such as embedded systems and mobile phones.
Mobile robots in real-life settings would benefit from being able to localize and track sound sources. Such a capability can help localizing a person or an interesting event in the environment, and also provides enhanced processing for other capabilities such as speech recognition. To give this capability to a robot, the challenge is not only to localize simultaneous sound sources, but to track them over time. In this paper we propose a robust sound source localization and tracking method using an array of eight microphones. The method is based on a frequency-domain implementation of a steered beamformer along with a particle filter-based tracking algorithm. Results show that a mobile robot can localize and track in real-time multiple moving sources of different types over a range of 7 meters. These new capabilities allow a mobile robot to interact using more natural means with people in real life settings.
The hearing sense on a mobile robot is important because it is omnidirectional and it does not require direct line-of-sight with the sound source. Such capabilities can nicely complement vision to help localize a person or an interesting event in the environment. To do so the robot auditory system must be able to work in noisy, unknown and diverse environmental conditions. In this paper we present a robust sound source localization method in three-dimensional space using an array of 8 microphones. The method is based on time delay of arrival estimation. Results show that a mobile robot can localize in real time different types of sound sources over a range of 3 meters and with a precision of 3 • .
Despite noise suppression being a mature area in signal processing, it remains highly dependent on fine tuning of estimator algorithms and parameters. In this paper, we demonstrate a hybrid DSP/deep learning approach to noise suppression. We focus strongly on keeping the complexity as low as possible, while still achieving high-quality enhanced speech. A deep recurrent neural network with four hidden layers is used to estimate ideal critical band gains, while a more traditional pitch filter attenuates noise between pitch harmonics. The approach achieves significantly higher quality than a traditional minimum mean squared error spectral estimator, while keeping the complexity low enough for real-time operation at 48 kHz on a low-power CPU.Index Terms-noise suppression, recurrent neural network
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.