International audienceIn this paper, we are studying hybrid Brain-Computer Interfaces (BCI) coupling joystick data, electroencephalogram (EEG – electrical activity of the brain) and electromyogram (EMG – electrical activity of muscles) activities for severe motor disabilities. We are focusing our study on muscular activity as a control modality to interact with an application. We present our data processing and classification technique to detect right and left hand movements. EMG modality is well adapted for DMD patients, because less strength is needed to detect movements in contrast to conventional interfaces like joysticks. Across virtual reality tools, we believe that users will be more able to understand how to interact with such kind of interactive systems. This first part of our study report some very good results concerning the detection of hand movements, according to muscular channel, on healthy subjects
As part of the theory of belief functions, we address the problem of appraising the similarity between bodies of evidence in a relevant way using metrics. Such metrics are called evidential distances and must be computed from mathematical objects depicting the information inside bodies of evidence. Specialization matrices are such objects and, therefore, an evidential distance can be obtained by computing the norm of the difference of these matrices. Any matrix norm can be thus used to define a full metric. In this paper, we show that other matrices can be used to obtain new evidential distances. These are the α -specialization and α -generalization matrices and are closely related to the α -junctive combination rules. We prove that any L(1) norm-based distance thus defined is consistent with its corresponding α -junction. If α > 0 , these distances have in addition relevant variations induced by the poset structure of the belief function domain. Furthermore, α -junctions are meta-data dependent combination rules. The meta-data involved in α -junctions deals with the truthfulness of information sources. Consequently, the behavior of such evidential distances is analyzed in situations involving uncertain or partial meta-knowledge about information source truthfulness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.