Abstract. In the current context of fossil energy scarcity, car manufacturers have to optimize vehicles energy efficiency. This global and continuous improvement includes a change of the exhaust manifold design. Usually in cast iron, exhaust manifolds tend to be mechanically welded in order to fit new constraints such as lightness, durability, efficiency and small size. To achieve such requirements, ferritic stainless steels with high chromium content (19%) and molybdenum (2%) are developed. For the welding, the use of existing filler wire does not satisfy fully the application requirements. This leads to oxidation problems and / or thermal fatigue strength that drastically reduces assembly lifetime. New flux cored wires are developed in the context of this study in order to provide molten zone characteristics close to those of the base metal. Different chemical compositions are tested in order to highlight the influence of stabilizing element on microstructure. Welding tests revealed the major influence of titanium on the grain refinement in the molten zone. A minimum Ti content of 0.45 weight % in the filler wire is required to be efficient as grain refiner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.