A systematic variation of well deliverability, as reflected from isochronal back-pressure tests performed at regular intervals, has been observed in some gas condensate wells producing at high rates. The same effects have been obtained using a numerical model of gas and condensate flow which takes into account secondary gasoline deposited in the pore space as a result of pressure reduction, and nondarcy flow of gas in the vicinity of the wells. Matching calculated values with previous test results bas been possible, and future predictions have been obtained. An application of this method to the Hassi Er R'Mel gas-condensate field in Algeria is tentatively shown. Introduction Flow capacity of gas wells is generally derived from an analysis of back-pressure tests. The empirical equation q = C(Delta p)n used by Rawlins and Schellhardt can be derived rigorously assuming that steady-state radial flow of a dry gas of constant viscosity and compressibility is established during each flow period of the well tests. Furthermore, when Darcy's law applies in the entire flow region, the theory predicts that the exponent n is equal to 1. In low-permeability reservoirs, it was soon discovered that the time required to reach a stabilized flow often exceeded the duration of the flow periods normally available for testing wells. Consequently, transient gas flow had to be considered instead of the steady-state assumption previously used. This led to the isochronal testing procedure established by Cullender which has largely replaced conventional back-pressure testing. For dry gas fields, this method yields definite values of C and n equivalent to those of the empirical equation. These values should remain constant for each well as long as the permeability of the formation and the characteristics of the gas (viscosity and compressibility) do not change appreciably. This is the case when reservoir pressure remains close to the original value and when the formation near the wellbore remains free of plugging. Under those conditions, stabilized flow potential curves of gas wells can be established from a single sequence of isochronal flow and shut-in periods. An analysis of a pressure build-up following a longer production period provides additional data on the transmissivity (kh/mu) of the reservoir, and eventually on the drainage radius rd of the well, which can be related to the value of C so that future performance of the well can be predicted using the concepts developed by A. Houpeurt. At high How rates, Darcy's law no longer applies in the vicinity of the wellbore, and inertial effects in the high velocity gas flow introduce additional pressure drops. As a consequence, exponent n of the back-pressure tests becomes smaller than 1, and a slight curvature of the log-log plot of Delta p vs q can be predicted When going from very low to high rates of flow (Elenbaas and Katz). The effects of variations of viscosity and compressibility with pressure on the radial flow of dry gas in an infinite reservoir were taken into account by Jenkins and Aronofsky. Numerical solutions of the transient flow of an ideal gas in finite radial reservoirs were presented by Bruce, Peaceman, Rachford and Rice. In the case of gas condensate wells however the presence of gasoline in the pore space as soon as reservoir pressure is reduced below the dewpoint pressure further complicates the interpretation of flow tests so that the prediction of stabilized well performance becomes very difficult. Field observation shows that both C and n derived from isochronal tests vary in time, even when reservoir pressure has not changed appreciably. Such a variation cannot be attributed to any change of the gas characteristics, and must result from the effect of a gasoline saturation on the gas flow. SPEJ P. 113ˆ
International audienceThis paper deals with a finite element implementation concerning the shape memory behavior. Shape memory behavior is usually driven by temperature changes. This model allows the simulation of problems integrating complex mechanical loading effects under random temperature variations. According to the relationship between stress and strain, the shape fixation during cooling phases and the memory effect during heating phase are modelised through a hereditary behavior needing incremental formulation developments. The step by step process introduces an additional fixed stress. Simulations request, for complex geometries including boundary conditions, a finite element approach. Thermodynamic developments are presented in order to define energetic balance and dissipations. In this paper, we propose to generalize this dependence of elastic modulus variations. A formulation for random mechanical loading and temperature variations is proposed. An experimental validation is proposed about shape memory alloy polymer DP5
International audienceCreep evolution of timber structures results from the interaction between mechanical stresses due to different loads and hydric stresses due to moisture content variations. This paper deals with a thermodynamic approach in order to take into account a realistic elastic behavior under moisture content variations. In this context, memory effect, experimentally observed, is introduced employing a mechano-sorptive stress driven by a function dependent of the moisture content variations. This new internal thermodynamic variable enables to define an original separation of the free energy into an instantaneous recoverable part and a stored part during the last drying phase. This energy enables the modeling of the nonreversible strain process during the unloading phase. The locate state method is employed in order to define the thermodynamic function which traduces an indirect hereditary behavior between moisture content history and the stress state in the material
Timber structures are simultaneously loaded by moisture content and mechanical effects. We propose a thermodynamic approach, for creep uniaxial elastics loadings, witch allows us to transpose Hooke's law to mécanosorptive behaviour by uncoupling internal stress in a mechanical and a mecanosorptive stress. The Calculus of elastic deformation necessitates to define wood memory as minimal elastic modulus under creep loading. Generalization of this model for an arbitrary loading is presented by an incremental formulation and an integral formulation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.