The present study presents the use of high frequency ultrasound (500 kHz, 25 W) for 3,4-ethylenedioxythiophene (EDOT) electropolymerization in aqueous medium in order to investigate its effects on conducting polymer properties. It was shown that mass transfer increases under ultrasound irradiation which improved electropolymerization and the comparison with experiments carried out at the same mass transfer level (4.6 × 10(-5) ms(-1)) puts in evidence that stirring effect is not the only phenomenon induced by ultrasound during electrodeposition. PEDOT films elaborated under ultrasonication present increased doping levels revealed by X-ray Photoelectron Spectroscopy (XPS) analysis, especially in the case of thick films (measured by mechanical probe), thanks to better incorporation of counter ions within polymer matrix as another consequence of mass transport improvement under ultrasound and probably film heating by wave absorption for the highest thicknesses. A dilation of the film under sonication leading to an increase in film thickness was also highlighted. Finally, a refining of the surface structure was also observed via SEM imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.