SARS-CoV-2 is the etiological agent of COVID-19. Most of SARS-CoV-2 carriers are assumed to exhibit no or mild non-specific symptoms. Thus, they may contribute to the rapid and mostly silent circulation of the virus among humans. Since SARS-CoV-2 can be detected in stool samples it has recently been proposed to monitor SARS-CoV-2 in wastewaters (WW) as a complementary tool to investigate virus circulation in human populations. In the present work we assumed that the quantification of SARS-CoV-2 genomes in wastewaters should correlate with the number of symptomatic or non-symptomatic carriers. To test this hypothesis, we performed a time-course quantitative analysis of SARS-CoV-2 by RT-qPCR in raw wastewater samples collected from several major wastewater treatment plant (WWTP) of the Parisian area. The study was conducted from March 5 to April 23 2020, therefore including the lockdown period in France (since March 17 2020). We confirmed that the increase of genome units in raw wastewaters accurately followed the increase of human COVID-19 cases observed at the regional level. Of note, the viral genomes could be detected before the beginning of the exponential growth of the epidemic. As importantly, a marked decrease in the quantities of genomes units was observed concomitantly with the reduction in the number of new COVID-19 cases which was an expected consequence of the lockdown. As a conclusion, this work suggests that a quantitative monitoring of SARS-CoV-2 genomes in wastewaters should bring important and additional information for an improved survey of SARS-CoV-2 circulation at the local or regional scale.
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human faeces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.