Dehydrins constitute a class of intrinsically disordered proteins that are expressed under conditions of water-related stress. Characteristic of the dehydrins are some highly conserved stretches of seven to 17 residues that are repetitively scattered in their sequences, the K-, S-, Y-, and Lys-rich segments. In this study, we investigate the putative role of these segments in promoting structure. The analysis is based on comparative analysis of four full-length dehydrins from Arabidopsis (Arabidopsis thaliana; Cor47, Lti29, Lti30, and Rab18) and isolated peptide mimics of the K-, Y-, and Lys-rich segments. In physiological buffer, the circular dichroism spectra of the full-length dehydrins reveal overall disordered structures with a variable content of poly-Pro helices, a type of elongated secondary structure relying on bridging water molecules. Similar disordered structures are observed for the isolated peptides of the conserved segments. Interestingly, neither the full-length dehydrins nor their conserved segments are able to adopt specific structure in response to altered temperature, one of the factors that regulate their expression in vivo. There is also no structural response to the addition of metal ions, increased protein concentration, or the protein-stabilizing salt Na 2 SO 4 . Taken together, these observations indicate that the dehydrins are not in equilibrium with highenergy folded structures. The result suggests that the dehydrins are highly evolved proteins, selected to maintain high configurational flexibility and to resist unspecific collapse and aggregation. The role of the conserved segments is thus not to promote tertiary structure, but to exert their biological function more locally upon interaction with specific biological targets, for example, by acting as beads on a string for specific recognition, interaction with membranes, or intermolecular scaffolding. In this perspective, it is notable that the Lys-rich segment in Cor47 and Lti29 shows sequence similarity with the animal chaperone HSP90.
Members of the ‘Bacillus subtilis group’ include some of the most commercially important bacteria, used for the production of a wide range of industrial enzymes and fine biochemicals. Increasingly, group members have been developed for use as animal feed enhancers and antifungal biocontrol agents. The group has long been recognised to produce a range of secondary metabolites and, despite their long history of safe usage, this has resulted in an increased focus on their safety. Traditional methods used to detect the production of secondary metabolites and other potentially harmful compounds have relied on phenotypic tests. Such approaches are time consuming and, in some cases, lack specificity. Nowadays, accessibility to genome data and associated bioinformatical tools provides a powerful means for identifying gene clusters associated with the synthesis of secondary metabolites. This review focuses primarily on well-characterised strains of B. subtilis and B. licheniformis and their synthesis of non-ribosomally synthesised peptides and polyketides. Where known, the activities and toxicities of their secondary metabolites are discussed, together with the limitations of assays currently used to assess their toxicity. Finally, the regulatory framework under which such strains are authorised for use in the production of food and feed enzymes is also reviewed.
In pea leaves, the synthesis of 7,8‐dihydropteroate, a primary step in folate synthesis, was only detected in mitochondria. This reaction is catalyzed by a bifunctional 6‐hydroxymethyl‐7,8‐dihydropterin pyrophosphokinase/7,8‐dihydropteroate synthase enzyme, which represented 0.04–0.06% of the matrix proteins. The enzyme had a native mol. wt of 280–300 kDa and was made up of identical subunits of 53 kDa. The reaction catalyzed by the 7,8‐dihydropteroate synthase domain of the protein was Mg2+‐dependent and behaved like a random bireactant system. The related cDNA contained an open reading frame of 1545 bp and the deduced amino acid sequence corresponded to a polypeptide of 515 residues with a calculated Mr of 56 454 Da. Comparison of the deduced amino acid sequence with the N‐terminal sequence of the purified protein indicated that the plant enzyme is synthesized with a putative mitochondrial transit peptide of 28 amino acids. The calculated Mr of the mature protein was 53 450 Da. Southern blot experiments suggested that a single‐copy gene codes for the enzyme. This result, together with the facts that the protein is synthesized with a mitochondrial transit peptide and that the activity was only detected in mitochondria, strongly supports the view that mitochondria is the major (unique?) site of 7,8‐dihydropteroate synthesis in higher plant cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.