Meprins are membrane-bound and secreted metalloproteinases consisting of α and/or β subunits that are highly expressed in kidney epithelial cells and are differentially expressed in podocytes and leukocytes (macrophages and monocytes). Several studies have implicated meprins in the progression of diabetic nephropathy (DN) and fibrosis-associated kidney disease. However, the mechanisms by which meprins modulate DN are not understood. To delineate the role of meprins in DN, we subjected meprin αβ knockout (αβKO) mice and their wild-type (WT) counterparts to streptozotocin-induced type 1 diabetes. The 18-week survival rates were significantly lower for diabetic meprin αβKO mice when compared to those for their WT counterparts. There were significant decreases in mRNA and protein levels for both meprin α and β in diabetic WT kidneys. Furthermore, the blood urea nitrogen levels and urine albumin/creatinine ratios increased in diabetic meprin αβKO but not in diabetic WT mice, indicating that meprins may be protective against diabetic kidney injury. The brush border membrane levels of villin, a meprin target, significantly decreased in diabetic WT but not in diabetic meprin αβKO kidneys. In contrast, isoform-specific increases in cytosolic levels of the catalytic subunit of PKA, another meprin target, were demonstrated for both WT and meprin αβKO kidneys.
Platelets are critical in hemostasis and a major contributor to arterial thrombosis (AT). (Pre)clinical studies suggest platelets also contribute to venous thrombosis (VT), but the mechanisms are largely unknown. We hypothesized that in VT, platelets utilize a signaling machinery distinct from AT. Here we aimed to characterize the contributions of platelet G protein-coupled (GPCR) and immunoreceptor tyrosine-based activation motif (ITAM) receptor signaling to VT. Wild type (WT) and transgenic mice were treated with inhibitors to selectively inhibit platelet signaling pathways: ITAM - CLEC2 (Clec2mKO), GPVI (JAQ1 antibody), and Bruton's tyrosine kinase (ibrutinib); GPCR - cyclooxygenase 1 (aspirin) and P2Y12 (clopidogrel). VT was induced by inferior vena cava stenosis. Thrombin generation in platelet-rich plasma and whole blood clot formation were studied ex vivo. Intravital microscopy was used to study platelet-leukocyte interactions after flow restriction. Thrombus weights were reduced in WT mice treated with high dose aspirin+clopidogrel (DAPT), but not in mice treated with either inhibitor alone or low dose DAPT. Similarly, thrombus weights were reduced in mice with impaired ITAM signaling (Clec2mKO+JAQ1; WT+ibrutinib), but not in Clec2mKO or WT+JAQ1 mice. Both aspirin and clopidogrel, but not ibrutinib, protected mice from FeCl3-induced AT. Thrombin generation and clot formation were normal in blood from high dose DAPT- or ibrutinib-treated mice; however, platelet adhesion and platelet-neutrophil aggregate formation at the vein wall were reduced in high dose DAPT- or ibrutinib-treated mice. In summary, VT initiation requires platelet activation via GPCRs and ITAM receptors. Strong inhibition of either signaling pathway reduces VT in mice.
Genetic variants within the fibrinogen Aa-chain encoding the aC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ~10% plasma fibrinogen levels relative to FgaWT/WTmice, linked to 90% reduction in hepatic Fga mRNA due to nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, while Fga-/- mice had continuous bleeding. Platelets from FgaWT/WTandFga270/270 mice displayed comparable initial aggregation following ADP stimulation, but Fga270/270 platelets quickly disaggregated. Despite ~10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ~30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ~10% with siRNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen aC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.
Background Meprin metalloproteases are abundantly expressed in the brush border membranes of kidney proximal tubules and small intestines. Meprins are also expressed in podocytes and leukocytes (monocytes and macrophages). Meprins are implicated in the pathophysiology of diabetic nephropathy (DN) but underlying mechanisms are not fully understood. Single nucleotide polymophisms (SNPs) in the meprin β gene were associated with DKD in human subjects. Furthermore, meprin α and β double deficiency resulted in more severe kidney injury and higher mortality rates in mice with Streptozotocin (STZ)-induced type 1 diabetes. Identification of meprin substrates has provided insights on how meprins could modulate kidney injury. Meprin targets in the kidney include extracellular matrix (ECM) proteins, modulators of inflammation, and proteins involved in the protein kinase A (PKA) and PKC signaling pathways. The current study used a global metabolomics approach to determine how meprin β expression impacts the metabolite milieu in diabetes and DKD. Methods Low dose STZ was used to induce type 1 diabetes in 8-week old wild-type (WT) and meprin β knockout (βKO) mice. Blood and urine samples were obtained at 4 and 8 weeks post-STZ injection. Assays for albumin, creatinine, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule − 1 (KIM-1), and cystatin C were used for biochemical assessment of kidney injury. Data for biomarkers of kidney injury utilized two-way ANOVA. Metabolomics data analysis utilized UPLC-QTOF MS and multivariate statistics. Results The number of metabolites with diabetes-associated changes in levels were significantly higher in the WT mice when compared to meprin βKO counterparts. Annotated meprin β expression-associated metabolites with strong variable importance in projection (VIP) scores play roles in lipid metabolism (LysoPC(16:1(9Z)), taurocholic acid), amino acid metabolism (indoxyl sulfate, hippuric acid), and neurotransmitter/stress hormone synthesis (cortisol, 3-methoxy-4-hydroxyphenylethylene glycolsulfate, homovanillic acid sulfate). Metabolites that associated with meprin β deficiency include; 3,5-dihydroxy-3′,4′-dimethoxy-6,7-methylenedioxyflavone 3-glucuronide, pantothenic acid, and indoxyl glucuronide (all decreased in plasma). Conclusion Taken together, the annotated metabolites suggest that meprin β impacts complications of diabetes such as DKD by altering distinct metabolite profiles. Electronic supplementary material The online version of this article (10.1186/s12882-019-1313-2) contains supplementary material, which is available to authorized users.
Meprin metalloproteases have been implicated in the progression of kidney injury. Previous work from our group has shown that meprins proteolytically process the catalytic subunit of protein kinase A (PKA-C), resulting in decreased PKA-C kinase activity. The goal of the present study was to determine the PKA-C isoforms impacted by meprin-β and whether meprin-β expression affects downstream mediators of the PKA signaling pathway in ischemia-reperfusion (IR)-induced kidney injury. IR was induced in 12-wk-old male wild-type (WT) and meprin-β knockout (βKO) mice. Madin-Darby canine kidney cells transfected with meprin-β cDNA were also subjected to 2 h of hypoxia. Western blot analysis was used to evaluate levels of total PKA-C, PKA-Cα, PKA-Cβ, phosphorylated (p-)PKA-C, and p-ERK1/2. Meprin-β expression enhanced kidney injury as indicated by levels of neutrophil gelatinase-associated lipocalin and cystatin C. IR-associated decreases were observed in levels of p-PKA-C in kidney tissue from WT mice but not βKO mice, suggesting that meprin-β expression/activity is responsible for the in vivo reduction in kinase activity. Significant increases in levels of PKA-Cβ were observed in kidney lysates for WT mice but not βKO mice at 6 h post-IR. Proximal tubule PKA-Cβ increases in WT but not βKO kidneys were demonstrated by fluorescent microscopy. Furthermore, IR-induced injury was associated with significant increases in p-ERK levels for both genotypes. The present data demonstrate that meprin-β enhances IR-induced kidney injury in part by modulating mediators of the PKA-Cβ signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.