The melanoma transformation rate of an individual nevus is very low despite the detection of oncogenic BRAF or NRAS mutations in 100% of nevi. Acquired melanocytic nevi do, however, mimic melanoma, and approximately 30% of all melanomas arise within pre-existing nevi. Using whole-exome sequencing of 30 matched nevi, adjacent normal skin, and saliva we sought to identify the underlying genetic mechanisms for nevus development. All nevi were clinically, dermoscopically, and histopathologically documented. In addition to identifying somatic mutations, we found mutational signatures relating to UVR mirroring those found in cutaneous melanoma. In nevi we frequently observed the presence of the UVR mutation signature compared with adjacent normal skin (97% vs. 10%, respectively). Copy number aberration analysis showed that for nevi with copy number loss of tumor suppressor genes, this loss was balanced by loss of potent oncogenes. Moreover, reticular and nonspecific patterned nevi showed an increased (P < 0.0001) number of copy number aberrations compared with globular nevi. The mutation signature data generated in this study confirms that UVR strongly contributes to nevogenesis. Copy number changes reflect at a genomic level the dermoscopic differences of acquired melanocytic nevi. Finally, we propose that the balanced loss of tumor suppressor genes and oncogenes is a protective mechanism of acquired melanocytic nevi.
None of the melanoma apps tested had high enough agreement with the dermatologist's clinical opinion to be considered to provide additional benefit to patients in assessing their skin for high-risk pigmented lesions. The low sensitivity in detecting lesions that are suspicious to a trained specialist may mean false reassurance is being given to patients. Development of highly sensitive and specific melanoma apps remains a work in progress.
Melanocytic naevi are common melanocytic proliferations that may simulate the appearance of cutaneous melanoma. Naevi commonly harbour somatic mutations implicated in melanomagenesis but in most cases lack the necessary genomic alterations required for melanoma development. While the mitogen-activated protein kinase pathway and ultraviolet radiation strongly contribute to naevogenesis, the somatic mutational landscape of dermoscopic naevus subsets distinguishes some of the molecular hallmarks of naevi in relation to melanoma. We herein discuss the classification of naevi and theories of naevogenesis and review the current literature on the somatic alterations in naevi and melanoma. This review focusses on the clinical-dermoscopic-pathological and genomic correlation of naevi that shapes the current understanding of naevi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.