Summary. Background: Plasma and other body fluids contain membranous extracellular vesicles (EVs), which are considered to derive from activated or apoptotic cells. EVs participate in physiological and pathological processes and have potential applications in diagnostics or therapeutics. Knowledge on EVs is, however, limited, mainly due to their sub-micrometer size and to intrinsic limitations in methods applied for their characterization. Objectives: Our aim was to provide a comprehensive description of EVs from plasma of healthy subjects. Methods: Cryo-transmission electron microscopy combined with receptor-specific gold labeling was used to reveal the morphology, size and phenotype of EVs. An original approach based on sedimentation on electron microscopy grids was developed for enumerating EVs. A correlation was performed between conventional flow cytometry and electron microscopy results. Results: We show that platelet-free plasma samples contain spherical EVs, 30 nm to 1 lm in diameter, tubular EVs, 1-5 lm long, and membrane fragments, 1-8 lm large. We show that only a minority of EVs expose the procoagulant lipid phosphatidylserine, in contrast to the classical theory of EV formation. In addition, the concentrations of the main EV sub-populations are determined after sedimentation on EM grids. Finally, we show that conventional flow cytometry, the main method of EV characterization, detects only about 1% of them. Conclusion: This study brings novel insights on EVs from normal plasma and provides a reference for further studies of EVs in disease situations.
The development of procoagulant activity and microparticle formation during platelet activation is known to depend on an increase in cytosolic Ca2+ levels. We have studied the mechanisms leading to these events using FITC-labeled recombinant annexin V, a protein which binds with a high affinity to aminophospholipids, in flow cytometry. In particular, we show that the Ca(2+)-ATPase inhibitors thapsigargin and cyclopiazonic acid are as potent inducers of aminophospholipid exposure and microparticle formation as the ionophore A23187. In contrast, 2,5-di-tert-butyl-1, 4-benzohydroquinone induced negligible microparticle formation, although platelets abundantly bound annexin V-FITC. That platelet activation had occurred was confirmed by binding studies with VH10, a monoclonal antibody specific for the alpha-granule membrane glycoprotein GMP-140, and by prothrombinase activity measurements. These results demonstrate that microvesiculation is not an automatic response to aminophospholipid exposure. The Ca(2+)-ATPase inhibitors induced different intracellular Ca2+ levels as measured using fluo-3 as a calcium dye. These were 10 +/- 4 microM (n = 11) for thapsigargin (3 microM), 19.6 +/- 2.2 microM (n = 8) for cyclopiazonic acid (100 microM), and 0.619 +/- 0.137 microM (n = 8) for 2,5-di-tert-butyl-1,4-benzohydroquinone (100 microM). Calpain activity, as assessed in platelets by analyzing the degradation of cytoskeletal proteins, was only observed with agents that stimulated microparticle formation. Phospholipid transbilayer movement was studied by measuring annexin V binding during platelet activation. Results showed that aminophospholipid exposure induced by ionophore A23187 (t1/2 = 133 +/- 14 s) was more rapid than that induced by TG (t1/2 = 280 +/- 30 s), although the rate-limiting step in the assay was the binding of annexin V to activated platelets (t1/2 = 70-80 s). Interestingly, the presence of annexin V itself during the activation inhibited microparticle formation, although degradation of platelet proteins by calpain continued to occur. Our results clearly show (i) that aminophospholipid exposure and platelet microvesiculation are independent but closely regulated events and (ii) that while both processes are associated with an increase in intracellular Ca2+, microvesiculation additionally requires Ca(2+)-induced calpain activation and a fusion process inhibited by annexin V.
Targeting the tyrosine kinase activity of Bcr-Abl is an attractive therapeutic strategy in chronic myeloid leukemia (CML) and in Bcr-Abl-positive acute lymphoblastic leukemia. Whereas imatinib, a selective inhibitor of Bcr-Abl tyrosine kinase, is now used in frontline therapy for CML, secondgeneration inhibitors of Bcr-Abl tyrosine kinase such as nilotinib or dasatinib have been developed for the treatment of imatinib-resistant or imatinib-intolerant disease. In the current study, we generated nilotinib-resistant cell lines and investigated their mechanism of resistance. Overexpression of BCR-ABL and multidrug resistance gene (MDR-1) were found among the investigated mechanisms. We showed that nilotinib is a substrate of the multidrug resistance gene product, P-glycoprotein, using verapamil or PSC833 to block binding. Up-regulated expression of p53/56 Lyn kinase, both at the mRNA and protein level, was found in one of the resistant cell lines and Lyn silencing by small interfering RNA restored sensitivity to nilotinib. Moreover, failure of nilotinib treatment was accompanied by an increase of Lyn mRNA expression in patients with resistant CML. Two Src kinase inhibitors (PP1 and PP2) partially removed resistance but did not significantly inhibit Bcr-Abl tyrosine kinase activity. In contrast, dasatinib, a dual Bcr-Abl and Src kinase inhibitor, inhibited the phosphorylation of both BCR-ABL and Lyn, and induced apoptosis of the Bcr-Abl cell line overexpressing p53/56 Lyn. Such mechanisms of resistance are close to those observed in imatinib-resistant cell lines and emphasize the critical role of Lyn in nilotinib resistance. [Cancer Res 2008;68(23):9809-16]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.