This study assesses the effects of cyclic fatty acid monomers (CFAM) from heated vegetable oils on oxidative stress and inflammation. Wistar rats were fed either of these four diets for 28 days: canola oil (CO), canola oil and 0.5% CFAM (CC), soybean oil (SO), and soybean oil and 0.5% CFAM (SC). Markers of oxidative stress and inflammation were determined by micro liquid chromatography tandem mass spectrometry (micro-LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA) kits, respectively. Analysis of variance (ANOVA) for a 2 × 2 factorial design was performed to determine the CFAM and oil effects and interactions between these two factors at P ≤ 0.05. For significant interactions, a post hoc multiple comparison test was performed, i.e., Tukey HSD (honest significant difference) test. CFAM induced higher plasma levels of 15-F-IsoP (CC, 396 ± 43 ng/mL, SC, 465 ± 75 ng/mL vs CO, 261 ± 23 ng/mL and SO, 288 ± 35 ng/mL, P < 0.05). Rats fed the SC diet had higher plasma 2,3-dinor-15-F-IsoP (SC, 145 ± 9 ng/mL vs CC, 84 ± 8 ng/mL, CO, 12 ± 1 ng/mL, and SO, 12 ± 1 ng/mL, P < 0.05), urinary 2,3-dinor-15-F-IsoP (SC, 117 ± 12 ng/mL vs CC, 67 ± 13 ng/mL, CO, 15 ± 2 ng/mL, and SO, 18 ± 4 ng/mL, P < 0.05), and plasma IL-6 (SC, 57 ± 10 pg/mL vs CC, 48 ± 11 pg/mL, CO, 46 ± 9 pg/mL, and SO, 44 ± 4 pg/mL, P < 0.05) than the other three diet groups. These results indicate that CFAM increased the levels of markers of oxidative stress, and those effects are exacerbated by a CFAM-high-linoleic acid diet.
Cyclic fatty acid monomers (CFAM) generated through domestic or industrial heating of vegetable oils may alter liver enzymes and induce hepatomegaly and steatosis, but the underlying mechanisms are not clearly understood. This study aimed to assess the effects of CFAM on liver and plasma lipids and to determine whether these effects are modulated by dietary lipids. Thirty‐six (36) male Wistar rats were fed either of the four isoenergetic diets consisting of canola oil or soybean oil with/without 500 mg/100 g CFAM of total fat for 28 days. Rats fed CFAM had higher liver total lipids (p = 0.03) and triacylglycerols (TAG) (p = 0.02), but less hepatic phosphatidylcholine (p = 0.02) compared to those fed the non‐CFAM diets. CFAM did not alter liver phosphatidylethanolamine N‐methyltransferase (PEMT) activity and CTP: phosphocholine cytidylyltransferase (CT‐α) protein levels. Rats fed CFAM diets had higher levels of plasma total cholesterol (TC), VLDL + LDL cholesterol, higher ratio of TC to HDL cholesterol, and lower levels of HDL cholesterol compared with rats fed non‐CFAM diets (p < 0.05). Plasma alanine transaminase (ALT) was decreased with CFAM, but plasma insulin, glucose, and TAG did not vary among the four diet groups (p < 0.05). Rats fed canola oil and CFAM had higher plasma levels of aspartate transaminase (AST) and AST/ALT ratio compared with the other three diet groups. These results indicate that CFAM may provoke an accumulation of TAG in the liver related to a decrease in phosphatidylcholine (PC) levels, but the effect of CFAM on PC concentrations may not occur through impairment of the two main PC biosynthesis pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.