-Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC), were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among 38 flocks, using an animal model. In the experimental flock, the frequency of culling due to clinical mastitis (5%) was lower than that of subclinical mastitis (10%) predicted from SCC. Predicted subclinical mastitis was unfavourably associated with the milk yield level. Such an antagonism was not detected for clinical mastitis, which could result, to some extent, from its low frequency or from the limited amount of data. In practice, however, selection for mastitis resistance could be limited in a first approach to selection against subclinical mastitis using SCC. The heritability estimate of SCC was 0.15 for the lactation mean trait and varied from 0.04 to 0.12 from the first to the fifth test-day. The genetic correlation between lactation SCC and milk yield was slightly positive (0.15) but showed a strong evolution during lactation, i.e. from favourable ( 0.48) to antagonistic (0.27). On a lactation basis, our results suggest that selection for mastitis resistance based on SCC is feasible. Patterns for genetic parameters within first lactation, however, require further confirmation and investigation.dairy sheep / somatic cell count / mastitis / genetic parameters / risk factors
Genotypes, phenotypes and pedigrees of 6 breeds of dairy sheep (including subdivisions of Latxa, Manech, and Basco-Béarnaise) from the Spain and France Western Pyrenees were used to estimate genetic relationships across breeds (together with genotypes from the Lacaune dairy sheep) and to verify by forward cross-validation single-breed or multiple-breed genetic evaluations. The number of rams genotyped fluctuated between 100 and 1,300 but generally represented the 10 last cohorts of progeny-tested rams within each breed. Genetic relationships were assessed by principal components analysis of the genomic relationship matrices and also by the conservation of linkage disequilibrium patterns at given physical distances in the genome. Genomic and pedigree-based evaluations used daughter yield performances of all rams, although some of them were not genotyped. A pseudo-single step method was used in this case for genomic predictions. Results showed a clear structure in blond and black breeds for Manech and Latxa, reflecting historical exchanges, and isolation of Basco-Béarnaise and Lacaune. Relatedness between any 2 breeds was, however, lower than expected. Single-breed genomic predictions had accuracies comparable with other breeds of dairy sheep or small breeds of dairy cattle. They were more accurate than pedigree predictions for 5 out of 6 breeds, with absolute increases in accuracy ranging from 0.05 to 0.30 points. They were significantly better, as assessed by bootstrapping of candidates, for 2 of the breeds. Predictions using multiple populations only marginally increased the accuracy for a couple of breeds. Pooling populations does not increase the accuracy of genomic evaluations in dairy sheep; however, single-breed genomic predictions are more accurate, even for small breeds, and make the consideration of genomic schemes in dairy sheep interesting.
Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism.
Records from 94,445 and 45,499 French Lacaune dairy ewes in first and second lactations, respectively, were used to estimate genetic parameters for somatic cell scores. Somatic cell count data came from an extensive recording scheme and sample testing that began in 1999 using the flocks enrolled in the official milk recording system. Somatic cell count data were from 2 to 4 test days per lactation. Lactation average and single test-day somatic cell scores were considered in multitrait sire models. The heritability estimate of lactation somatic cell score was close to 0.13 and similar for first and second parity. Heritabilities of somatic cell scores increased from first to fourth test day (from 0.07 to 0.11 in first lactation and from 0.05 to 0.13 in second lactation). Genetic correlations between somatic cell scores were high, usually more than 0.91, but lower between first test day and later test days in first lactation (0.64 to 0.88). The genetic correlations between lactation somatic cell score and milk yield, between lactation somatic cell score and fat content, and between lactation somatic cell score and protein content were 0.18, 0.04, and 0.03 in first lactation, respectively. The genetic antagonism between test day somatic cell score and milk yield measured in first lactation increased from beginning to the end of the lactation (0.05 to 0.23). This antagonism was slightly lower for somatic cell score in second lactation (from 0.09 to 0.14, and 0.08 for lactation mean). Environmental correlations in first lactation between lactation somatic cell score and milk yield, between lactation somatic cell score and fat content, and between lactation somatic cell score and protein content were -0.18, 0.13, and 0.30, respectively.
Background Bias has been reported in genetic or genomic evaluations of several species. Common biases are systematic differences between averages of estimated and true breeding values, and their over- or under-dispersion. In addition, comparing accuracies of pedigree versus genomic predictions is a difficult task. This work proposes to analyse biases and accuracies in the genetic evaluation of milk yield in Manech Tête Rousse dairy sheep, over several years, by testing five models and using the estimators of the linear regression method. We tested models with and without genomic information [best linear unbiased prediction (BLUP) and single-step genomic BLUP (SSGBLUP)] and using three strategies to handle missing pedigree [unknown parent groups (UPG), UPG with QP transformation in the matrix (EUPG) and metafounders (MF)]. Methods We compared estimated breeding values (EBV) of selected rams at birth with the EBV of the same rams obtained each year from the first daughters with phenotypes up to 2017. We compared within and across models. Finally, we compared EBV at birth of the rams with and without genomic information. Results Within models, bias and over-dispersion were small (bias: 0.20 to 0.40 genetic standard deviations; slope of the dispersion: 0.95 to 0.99) except for model SSGBLUP-EUPG that presented an important over-dispersion (0.87). The estimates of accuracies confirm that the addition of genomic information increases the accuracy of EBV in young rams. The smallest bias was observed with BLUP-MF and SSGBLUP-MF. When we estimated dispersion by comparing a model with no markers to models with markers, SSGBLUP-MF showed a value close to 1, indicating that there was no problem in dispersion, whereas SSGBLUP-EUPG and SSGBLUP-UPG showed a significant under-dispersion. Another important observation was the heterogeneous behaviour of the estimates over time, which suggests that a single check could be insufficient to make a good analysis of genetic/genomic evaluations. Conclusions The addition of genomic information increases the accuracy of EBV of young rams in Manech Tête Rousse. In this population that has missing pedigrees, the use of UPG and EUPG in SSGBLUP produced bias, whereas MF yielded unbiased estimates, and we recommend its use. We also recommend assessing biases and accuracies using multiple truncation points, since these statistics are subject to random variation across years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.