Both histone-acetylations and histone deacetylases have been shown to play a key role in cardiac remodeling. Recently, it has become abundantly clear that many non-histone proteins are modified by post-translational lysine acetylations and that these acetylations regulate protein activity, conformation, and binding. In the present study, non-histone acetylated proteins associated with heart failure were identified. Global screening for lysine acetylated proteins was performed using 2-dimensional gel electrophoresis coupled with immunoblotting with a primary monoclonal anti-acetyl-lysine antibody. Lysine acetylated proteins were compared in two rodent models of hypertensive heart failure, the Dahl salt-sensitive (SS) and spontaneously hypertensive heart failure prone (SHHF) rats with those in corresponding controls, i.e., the Dahl salt-resistant (SR) and W (W) rat strains, respectively. Forty-one and 66 acetylated proteins were detected in SS and SHHF failing hearts, respectively, but either not detected or detected with less abundance in corresponding control hearts. Twelve of these acetylated proteins were common to both models of heart failure. These were identified using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF/TOF) mass spectrometry followed by Mascot Analysis and included mitochondrial enzymes: ATP synthase, long-chain acyl-CoA dehydrogenase, creatine kinase, malate dehydrogenase, and pyruvate dehydrogenase. The abundance of NAD-dependent deacetylase sirtuin-3 (Sirt3), a mitochondrial deacetylase was reduced in SS and SHHF failing hearts. This is the first description of non-histone protein acetylations associated with heart failure and raises the prospect that acetylations of mitochondrial proteins linked to reduced Sirt3 mediate, in part, metabolic changes in heart failure.1
There is over-whelming evidence that protein phosphorylations regulate cardiac function and remodeling. A wide variety of protein kinases, e.g., phosphoinositide 3-kinase (PI3K), Akt, GSK-3, TGFβ, and PKA, MAPKs, PKC, Erks, and Jaks, as well as phosphatases, e.g., phosphatase I (PP1) and calcineurin, control cardiomyocyte growth and contractility. In the present work, we used global phosphoprotein profiling to identify phosphorylated proteins associated with pressure overload (PO) cardiac hypertrophy and heart failure. Phosphoproteins from hypertrophic and systolic failing hearts from male hypertensive Dahl salt-sensitive rats, trans-aortic banded (TAC), and spontaneously hypertensive heart failure (SHHF) rats were analyzed. Profiling was performed by 2-dimensional difference in gel electrophoresis (2D-DIGE) on phospho-enriched proteins. A total of 25 common phosphoproteins with differences in abundance in (1) the 3 hypertrophic and/or (2) the 2 systolic failure heart models were identified (CI>99%) by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Mascot analysis. Among these were (1) myofilament proteins, including alpha-tropomyosin and myosin regulatory light chain 2, cap Z interacting protein (cap ZIP), and tubulin β5; (2) mitochondrial proteins, including pyruvate dehydrogenase α, branch chain ketoacid dehydrogenase E1, and mitochondrial creatine kinase; (3) phosphatases, including protein phosphatase 2A and protein phosphatase 1 regulatory subunit; and (4) other proteins including proteosome subunits α type 3 and β type 7, and eukaryotic translation initiation factor 1A (eIF1A). The results include previously described and novel phosphoproteins in cardiac hypertrophy and systolic failure.
Serine-threonine Protein phosphatase 2 A (PP2A), a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac); a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa); and one of at least 18 associated variable regulatory proteins (B subunits) classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314). Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A) and non-phosphorylated (N-PR65A) amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A), elongation factor 2, heat shock protein 60 (HSP60), NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure.
There is over-whelming evidence that protein phosphorylations regulate cardiac function and remodeling. A wide variety of protein kinases, e.g., phosphoinositide 3-kinase (PI3K), Akt, GSK-3, TGFβ, and PKA, MAPKs, PKC, Erks, and Jaks, as well as phosphatases, e.g., phosphatase I (PP1) and calcineurin, control cardiomyocyte growth and contractility. In the present work, we used global phosphoprotein profiling to identify phosphorylated proteins associated with pressure overload (PO) cardiac hypertrophy and heart failure. Phosphoproteins from hypertrophic and systolic failing hearts from male hypertensive Dahl salt-sensitive rats; trans-aortic banded (TAC); Spontaneously hypertensive heart failure (SHHF) rats were analyzed. Profiling was performed by 2-dimensional difference in gel electrophoresis (2D-DIGE) on phosphoenriched proteins. A total of 25 common phosphoproteins with differences in abundance in 1) the 3 hypertrophic and /or 2) the 2 systolic failure heart models were identified (CI > 99%) by Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) and Mascot analysis. Among these were 1) myofilament proteins, including alpha-tropomyosin and myosin regulatory light chain 2; cap Z interacting protein (cap ZIP), and tubulin β5; 2) mitochondrial proteins, including pyruvate dehydrogenase α, branch chain ketoacid dehydrogenase E1, and mitochondrial creatine kinase 3) phosphatases, including protein phosphatase 2A and protein phosphatase 1 regulatory subunit and 4) other proteins including proteosome subunits α type 3 and β type 7, , and eukaryotic translation initiation factor 1A (eIF1A). These include previously described and novel phosphoproteins in cardiac hypertrophy and systolic failure. The database of phosphoproteins identified may provide new insights and therapeutic targets for heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.