Rare earth cerium oxide (ceria) nanoparticles are stabilized using end-functional phosphonated-PEG oligomers. The complexation process and structure of the resulting hybrid core-shell singlet nanocolloids are described, characterized, and modeled using light and neutron scattering data. The adsorption mechanism is nonstoichiometric, yielding the number of adsorbed chains per particle N(ads) = 270 at saturation. Adsorption isotherms show a high affinity of the phosphonate head for the ceria surface (adsorption energy DeltaG(ads) approximately -16kT) suggesting an electrostatic driving force for the complexation. The ease, efficiency, and integrity of the complexation is highlighted by the formation of nanometric sized cerium oxide particles covered with a well anchored PEG layer, maintaining the characteristics of the original sol. This solvating brushlike layer is sufficient to solubilize the particles and greatly expand the stability range of the original sol (
Recent studies have pointed out the importance of polyelectrolyte assembly in the elaboration of innovative nanomaterials. Beyond their structures, many important questions on the thermodynamics of association remain unanswered. Here, we investigate the complexation between poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium acrylate) (PANa) chains using a combination of three techniques: isothermal titration calorimetry (ITC), static and dynamic light scattering and electrophoresis. Upon addition of PDADMAC to PANa or vice-versa, the results obtained by the different techniques agree well with each other, and reveal a two-step process. The primary process is the formation of highly charged polyelectrolyte complexes of size 100 nm. The secondary process is the transition towards a coacervate phase made of rich and poor polymer droplets. The binding isotherms measured are accounted for using a phenomenological model that provides the thermodynamic parameters for each reaction. Small positive enthalpies and large positive entropies consistent with a counterion release scenario are found throughout this study. Furthermore, this work stresses the importance of the underestimated formulation pathway or mixing order in polyelectrolyte complexation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.