Studies assembling high quality datasets of fracture systems (joints and faults) from four reservoir analogues are described. These comprise limestones (Ireland), sandstones (Norway and Saudi Arabia) and chalk (Denmark). These are used with existing information from the literature to review the major controls and scaling behaviour of fracture systems expected in reservoir rocks. Lithological layering was found to be important and two end-member fracture systems have been identified. In "stratabound" systems, fractures are confined to single layers, sizes are scale restricted, and spacing is regular. In "non-stratabound systems", fractures show a wide range of sizes (often power-law), are spatially clustered and vertically persistent. In nature, variations between and combinations of these systems exist. These end-member systems have contrasting implications for fluid flow, including the scale of fracture that controls flow and the existence of a representative elementary volume, and thus on appropriate modelling approaches.
Uncertainty is a major aspect of the estimation, using models, of the risk of human exposure to pollutants. The Monte Carlo method, which applies probability theory to address model parameter uncertainty, relies on a statistical representation of available information. In recent years, the theory of possibilities has been proposed as an alternative approach to address model parameter uncertainty in situations where available information are insufficient to identify statistically representative probability distributions, due in particular to data scarcity. In practice, it may occur that certain model parameters can be reasonably represented by probability distributions, because there is sufficient data available to substantiate such distributions by statistical analysis, while others are better represented by fuzzy numbers (due to data scarcity). The question then arises as to how these two modes of representation of model parameter uncertainty can be combined for the purpose of estimating the risk of exposure. In this paper an approach (termed a hybrid approach) for achieving such a combination is proposed, and applied to the estimation of human exposure, via vegetable consumption, to cadmium present in the surficial soils of an industrial site located in the north of France. The application illustrates the potential of the proposed approach, which allows the uncertainty affecting model parameters to be represented in a fashion which is consistent with the information at hand.
An original method has been developed to model geology using the location of the geological interfaces and orientation data from structural field. Both types of data are cokriged to interpolate a continuous 3D potential-field scalar function describing the geometry of the geology. Geology contact locations set the position of reference isovalues while orientation data are the gradients of the scalar function. Geometry of geological bodies is achieved by discretising reference isovalues. Faults are modelled using the same method by inserting discontinuities in the potential field. Potential fields can be combined to model realistic, complex geometry: scalar functions representing separate geological series are merged automatically using geological rules to enable fast computation and easy update of interpretation. The methodology has been applied to a wide range of geological contexts including orogenic domains, basins, intrusive and extrusive environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.