Negative linear compressibility, i.e., the phenomenon of expansion rather than shrinkage in at least one direction upon the application of a hydrostatic compressive pressure is an unusual mechanical property which is attracting more interest in the recent years. Here, through analysis of published data by Hu et al. [J. Superhard Mater. 36, 257–269 (2014)] as well as through static force‐field based simulations, it is shown that it is possible to achieve this property in the novel carbon allotropes built from sp2 and sp3 hybridized carbon atoms which have a two‐dimensional projection that resembles a honeycomb motif in their (001) plane. This is in accordance with earlier predictions that honeycombs deforming through a hinging‐like mechanism could exhibit this property for certain geometries.
Maltese honey has been produced, marketed, and sold as an exclusive local gourmet food product for countless years. Yet, thus far, no study has evaluated the individuality of this local food product. The evaluation of the parameters and properties which characterise the provenance and floral source of honey have been the subject of various studies worldwide, owing to the price and potential beneficial properties of this food product. Models analysing the potential of attenuated total reflection mid-infrared (ATR-FT-MIR) spectroscopy in discriminating and classifying local honey from that of foreign origin were investigated using 21 Maltese honey samples and 49 honey samples collected from abroad (Sicily, Greece, Sweden, Italy, France, Estonia and other samples of mixed geographical origin). Through a combination of spectroscopic techniques, spectral transformations, variable selection and partial least squares discriminant analysis (PLS-DA), chemometric models which successfully classified the provenance of local and non-local honey were developed. The results of these models were also corroborated with other classification and pattern recognition techniques, such as linear discriminate analysis (LDA), support vector machines (SVM) and feed-forward artificial neural networks (FF-ANN).
The potential application of multivariate three-way data analysis techniques, namely parallel factor analysis (PARAFAC) and discriminant multi-way partial least squares regression (DN-PLSR), on three-dimensional excitation emission matrix (3D-EEM) fluorescent data were used to identify the uniqueness and authenticity of Maltese extra virgin olive oil (EVOO). A non-negativity constrained PARAFAC model revealed that a four-component model provided the most appropriate solution. Examination of the extracted components in mode 2 and 3 showed that these belonged to different fluorophores present in extra virgin olive oil. Application of linear discriminate analysis (LDA) and binary logistic regression analysis on the concentration of the four extracted fluorophores, showed that it is possible to discriminate Maltese EVOOs from non-Maltese EVOOs. The application of DN-PLSR provided superior means for discrimination of Maltese EVOOs. Further inspection of the extracted latent variables and their variable importance plots (VIPs) provided strong proof of the existence of four types of fluorophores present in EVOOs and their potential application for the discrimination of Maltese EVOOs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.