The electrical properties of silicon nitride/amorphous silicon structures were investigated using thin film transistors (TFTs) and metal insulator semiconductor (MIS) devices employing either a top nitride (TN) or bottom nitride (BN) as gate insulator. The density of states (DOS) deduced from the subthreshold transfer characteristic of the TFTs is one to two orders of magnitude higher than that obtained from quasistatic C(V) measurements on the MIS structures. This difference is discussed by considering the different thickness of the a‐Si:H layers of the two devices and the role of a fixed charge at the rear interface. Both techniques indicate a DOS in BN devices which is only slightly lower than in TN devices, by less than a factor of two. The measured field effect mobility of BN TFTs is about 70% higher. The differences in the measured field effect mobility for TN and BN configuration are discussed and ascribed to the source and drain parasitic resistances. The conclusion is verified by the fabrication of a TN TFT with a pure phosphine rear surface treatment, which exhibits performance comparable to BN TFTs.
The current climate and energy crisis urgently needs solar cells with efficiencies above the 29% single junction efficiency bottleneck. Silicon/perovskite tandem solar cells are a solution, which is attracting much attention. While silicon/perovskite tandem cells in 2-terminal and 4-terminal configurations are well documented, the three-terminal concept is still in its infancy. It has significant advantages under low light intensities as opposed to concentrated sunlight, which is the critical factor in designing tandem solar cells for low-cost terrestrial applications. This study presents novel studies of the sub-cell performance of the first three-terminal perovskite/silicon selective band offset barrier tandem solar cells fabricated in an ongoing research project. This study focuses on short circuit current and operating voltages of the sub-cells under light intensities of one sun and below. Lifetime studies show that the perovskite bulk carrier lifetime is insensitive to illumination, while the silicon cell's lifetime decreases with decreasing light intensity. The combination of perovskite and silicon in the 3T perovskite-silicon tandem therefore reduces the sensitivity of V OC to light intensity and maintains a relatively higher V OC down to low light intensities, whereas silicon single-junction cells show a marked decrease. This technological advantage is proposed as a novel advantage
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.