The species-are relationship in the hoverfly (Diptera, Syrphidae) communities of forest fragments in southern France. Á/ Ecography 29: 183 Á/190. The effect of forest fragmentation was studied in hoverfly communities of 54 isolated forests (0.14 Á/171 ha) in south west France. The positive relationship between species richness and wood patch area was investigated by testing the three hypotheses usually put forward to explain it: 1) the sampling effect hypothesis, 2) the patch heterogeneity hypothesis, 3) the hypothesis of equilibrium between distance from other patch (colonisation) and surface area of the patch (extinction). The syrphid species were divided into 3 ecological groups, based on larval biology as summarized in the ''Syrph the Net'' database: non forest species, facultative forest species and forest species. A total of 3317 adults belonging to 100 species, were captured in the 86 Malaise traps. Eight species were non forest (N0/16), 65 facultative forest (N0/2803) and 27 forest species (N0/498). Comparison of the slopes of the species-area curves for species richness and species density per forest patch showed a strong sampling effect in the species-area relationship. Wood patch heterogeneity increased with wood patch area and positively influenced hoverflies richness. Less isolated wood patches presented high richness of forest species and low richness of non forest species. Only forest species richness seemed to respond to the equilibrium between surface area and isolation. Depending on which hypothesis explained best the species-area relationship, management recommendations to mitigate fragmentation effects were formulated at various spatial scales and for different stakeholders.A. Ouin, (ouin@ensat.fr),
While small, fragmented wooded elements do not represent a large surface area in agricultural landscape, their role in the sustainability of ecological processes is recognized widely. Unfortunately, landscape ecology studies suffer from the lack of methods for automatic detection of these elements. We propose a hybrid approach using both aerial photographs and ancillary data of coarser resolution to automatically discriminate small wooded elements. First, a spectral and textural analysis is performed to identify all the planted-tree areas in the digital photograph. Secondly, an object-orientated spatial analysis using the two data sources and including a multi-resolution segmentation is applied to distinguish between large and small woods, copses, hedgerows and scattered trees. The results show the usefulness of the hybrid approach and the prospects for future ecological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.