The radiation force exerted on an object by an acoustic wave is a widely studied phenomenon since the early work of Rayleigh, Langevin and Brillouin, and has led in the last decade to tremendous developments for acoustic micromanipulation. Despite extensive work on this phenomenon, the expressions of the acoustic radiation force applied on a particle have so far been derived only for a steady particle, hence neglecting the effect of its displacement on the radiated wave. In this work, we study the acoustic radiation force exerted on a monopolar source translating at a constant velocity that is small compared to the sound speed. We demonstrate that the asymmetry of the emitted field resulting from the Doppler effect induces a radiation force on the source opposite to its motion.
The radiation force exerted on an object by an acoustic wave is a widely studied phenomenon since the early work of Rayleigh, Langevin and Brillouin and has led in the last decade to tremendous developments for acoustic micromanipulation. Despite extensive work on this phenomenon, the expressions of the acoustic radiation force applied on a particle have so far been derived only for a steady particle, hence neglecting the effect of its displacement on the radiated wave. In this work we study the acoustic radiation force exerted on a monopolar source translating at a constant velocity small compared to the sound speed. We demonstrate that the asymmetry of the emitted field resulting from Doppler effect induces a radiation force on the source opposite to its motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.