The present study evaluated, via a combined electrophysiological and dialysis approach, the potential influence of serotonin (5-HT)(2C) as compared to 5-HT(2A) and 5-HT(2B) receptors on dopaminergic, adrenergic, and serotonergic transmission in frontal cortex (FCX). Whereas the selective 5-HT(2A) antagonist MDL100,907 failed to modify extracellular levels of dopamine (DA), noradrenaline (NA) or 5-HT simultaneously quantified in single dialysate samples of freely-moving rats, the 5-HT(2B)/5-HT(2C) antagonist SB206,553 dose-dependently increased levels of DA and NA without affecting those of 5-HT. This action was attributable to 5-HT(2C) receptor blockade inasmuch as the selective 5-HT(2C) antagonist SB242,084 likewise increased FCX levels of DA and NA, whereas the selective 5-HT(2B) antagonist SB204,741 was ineffective. Further, the preferential 5-HT(2C) receptor agonist Ro60-0175 dose-dependently depressed FCX levels of DA. The suppressive influence of 5-HT(2C) receptors on DA release was also expressed on mesolimbic and nigrostriatal dopaminergic pathways, in that levels of DA in nucleus accumbens and striatum were likewise reduced by Ro60-0175 and elevated, though less markedly, by SB206,553. In line with the above findings, Ro60-0175 dose-dependently decreased the firing rate of ventrotegmental dopaminergic and locus coeruleus (LC) adrenergic perikarya, whereas their activity was dose-dependently enhanced by SB206,553. Furthermore, SB206,553 transformed the firing pattern of ventrotegmental dopaminergic neurons into a burst mode. In contrast to SB206,553, MDL100,907 had little affect on the firing rate of dopaminergic or adrenergic neurons. In conclusion, as compared to 5-HT(2A) and 5-HT(2B) receptors, 5-HT(2C) receptors exert a tonic, suppressive influence on the activity of mesocortical - as well as mesolimbic and nigrostriatal - dopaminergic pathways, likely via indirect actions expressed at the level of their cell bodies. Frontocortical adrenergic, but not serotonergic, transmission is also tonically suppressed by 5-HT(2C) receptors.
The accompanying multivariate analysis of the binding profiles of antiparkinson agents revealed contrasting patterns of affinities at diverse classes of monoaminergic receptor. Herein, we characterized efficacies at human (h)D 2SHORT(S) , hD 2LONG(L) , hD 3 , and hD 4.4 receptors and at h␣ 2A -, h␣ 2B -, h␣ 2C -, and h␣ 1A -adrenoceptors (ARs). As determined by guanosine 5Ј-O-(3-[ S]GTP␥S) binding, no ligand displayed "full" efficacy relative to dopamine (100%) at all "D 2 -like" sites. However, at hD 2S receptors quinpirole, pramipexole, ropinirole, quinerolane, pergolide, and cabergoline were as efficacious as dopamine (E maxՆ 100%); TL99, talipexole, and apomorphine were highly efficacious (79 -92%); piribedil, lisuride, bromocriptine, and terguride showed intermediate efficacy (40 -55%); and roxindole displayed low efficacy (11%). For all drugs, efficacies were lower at hD 2L receptors, with terguride and roxindole acting as antagonists. At hD 3 receptors, efficacies ranged from 33% (roxindole) to 94% (TL99), whereas, for hD 4 receptors, highest efficacies (ϳ70%) were seen for quinerolane, quinpirole, and TL99, whereas piribedil and terguride behaved as antagonists and bromocriptine was inactive. Although efficacies at hD 2S versus hD 2L sites were highly correlated (r ϭ 0.79), they correlated only modestly to hD 3 /hD 4 sites (r ϭ 0.44 -0.59). In [ 35 S]GTP␥S studies of h␣ 2A -ARs, TL99 (108%), pramipexole (52%), talipexole (51%), pergolide (31%), apomorphine (16%), and quinerolane (11%) were agonists and ropinirole and roxindole were inactive, whereas piribedil and other agents were antagonists. Similar findings were obtained at h␣ 2B -and h␣ 2C -ARs. Using (Wang et al., 2000). As shown in the accompanying article , therapeutically used antiparkinson agents recognize D 2S and D 2L isoforms with similar affinity, and many antiparkinson agents also interact with dopamine D 3 receptors. Although the density of striatal D 3 receptors is reduced upon degeneration of nigrostriatal dopaminergic pathways, exposure to L-DOPA may induce their up-regulation, reflecting complex regulatory mechanisms involving dopamine D 1 receptors and brainderived neurotrophic factor (Quik et al., 2000;Guillin et al., 2001;Joyce, 2001). Nevertheless, the precise nature of functional interrelationships among D 3 , D 2 , and D 1 receptors, and the implication of D 3 receptors in the therapeutic comArticle, publication date, and citation information can be found at
Mirtazapine displayed marked affinity for cloned, human alpha2A-adrenergic (AR) receptors at which it blocked noradrenaline (NA)-induced stimulation of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]-GTPgammaS) binding. Similarly, mirtazapine showed high affinity for cloned, human serotonin (5-HT)2C receptors at which it abolished 5-HT-induced phosphoinositide generation. Alpha2-AR antagonist properties were revealed in vivo by blockade of UK-14,304-induced antinociception, while antagonist actions at 5-HT2C receptors were demonstrated by blockade of Ro 60 0175-induced penile erections and discriminative stimulus properties. Mirtazapine showed negligible affinity for 5-HT reuptake sites, in contrast to the selective 5-HT reuptake inhibitor, citalopram. In freely moving rats, in the dorsal hippocampus, frontal cortex (FCX), nucleus accumbens and striatum, citalopram increased dialysate levels of 5-HT, but not dopamine (DA) and NA. On the contrary, mirtazapine markedly elevated dialysate levels of NA and, in FCX, DA, whereas 5-HT was not affected. Citalopram inhibited the firing rate of serotonergic neurons in dorsal raphe nucleus, but not of dopaminergic neurons in the ventral tegmental area, nor adrenergic neurons in the locus coeruleus. Mirtazapine, in contrast, enhanced the firing rate of dopaminergic and adrenergic, but not serotonergic, neurons. Following 2 weeks administration, the facilitatory influence of mirtazapine upon dialysate levels of DA and NA versus 5-HT in FCX was maintained, and the influence of citalopram upon FCX levels of 5-HT versus DA and NA was also unchanged. Moreover, citalopram still inhibited, and mirtazapine still failed to influence, dorsal raphe serotonergic neurons. In conclusion, in contrast to citalopram, mirtazapine reinforces frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission. These actions reflect antagonist properties at alpha2A-AR and 5-HT2C receptors.
Specific membrane receptors for secretory phospholipases A2 (sPLA2s) have been initially identified with novel snake venom sPLA2s called OS1 and OS2. One of these sPLA2 receptors (muscle (M)-type, 180 kDa) has a very high affinity for OS1 and OS2 and a high affinity for pancreatic and inflammatory-type mammalian sPLA2s, which might be the natural endogenous ligands of PLA2 receptors. Primary structures of OS1 and OS2 were determined and compared with sequences of other sPLA2s that bind less tightly or do not bind to the M-type receptor. In addition, the binding properties of pancreatic sPLA2 mutants to the M-type receptor have been analyzed. Residues within or close to the Ca(2+)-binding loop of pancreatic sPLA2 are crucially involved in the binding step, although the presence of Ca2+ that is essential for the enzymatic activity is not required for binding to the receptor. These residues include Gly-30 and Asp-49, which are conserved in all sPLA2s. Leu-31 is also essential for binding of pancreatic sPLA2 to its receptor. Many other mutations have been considered. Those occurring in the N-terminal alpha helices and the pancreatic loop do not change binding to the M-type receptor. Conversion of pancreatic prophospholipase to phospholipase is essential for the acquisition of binding properties to the M-type receptor.
This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT1A receptors. This affected markedly the affinity ratios of certain compounds. For example, (+/-)-idazoxan was only 3.6-fold selective for h alpha2A versus h5-HT1A but 51-fold selective for r alpha2A versus r5-HT1A receptors. Conversely, yohimbine was tenfold selective for h alpha2A versus h5-HT1A adrenoceptors but 4.2-fold selective for r alpha2A versus r5-HT1A receptors. Nevertheless, both atipamezole and DMT were highly selective for both rat and human alpha2A versus rat or human 5-HT1A receptors. In conclusion, these data indicate that: (1) the agonist DMT and the antagonist atipamezole are the ligands of choice to distinguish alpha2-mediated from 5-HT1A-mediated actions, whilst several of the other compounds show only low or modest selectivity for alpha2A over 5-HT1A receptors; (2) caution should be exercised in experimental and clinical interpretation of the actions of traditionally employed alpha2 ligands, such as clonidine, yohimbine and (+/-)-idazoxan, which exhibit marked agonist activity at 5-HT1A receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.