This is an international consensus statement of an ad hoc committee formed by the International Society for Mountain Medicine (ISMM) at the VI World Congress on Mountain Medicine and High Altitude Physiology (Xining, China; 2004) and represents the committee's interpretation of the current knowledge with regard to the most common chronic and subacute high altitude diseases. It has been developed by medical and scientific authorities from the committee experienced in the recognition and prevention of high altitude diseases and is based mainly on published, peer-reviewed articles. It is intended to include all legitimate criteria for choosing to use a specific method or procedure to diagnose or manage high altitude diseases. However, the ISMM recognizes that specific patient care decisions depend on the different geographic circumstances involved in the development of each chronic high altitude disease. These guidelines are established to inform the medical services on site who are directed to solve high altitude health problems about the definition, diagnosis, treatment, and prevention of the most common chronic high altitude diseases. The health problems associated with life at high altitude are well documented, but health policies and procedures often do not reflect current state-of-the-art knowledge. Most of the cases of high altitude diseases are preventable if on-site personnel identify the condition and implement appropriate care.
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure during continuous session (IHT). Although substantial differences exist between these methods of hypoxic training and/or exposure, all have the same goal: to induce an improvement in athletic performance at sea level. They are also used for preparation for competition at altitude and/or for the acclimatization of mountaineers. The underlying mechanisms behind the effects of hypoxic training are widely debated. Although the popular view is that altitude training may lead to an increase in haematological capacity, this may not be the main, or the only, factor involved in the improvement of performance. Other central (such as ventilatory, haemodynamic or neural adaptation) or peripheral (such as muscle buffering capacity or economy) factors play an important role. LHTL was shown to be an efficient method. The optimal altitude for living high has been defined as being 2200-2500 m to provide an optimal erythropoietic effect and up to 3100 m for non-haematological parameters. The optimal duration at altitude appears to be 4 weeks for inducing accelerated erythropoiesis whereas <3 weeks (i.e. 18 days) are long enough for beneficial changes in economy, muscle buffering capacity, the hypoxic ventilatory response or Na(+)/K(+)-ATPase activity. One critical point is the daily dose of altitude. A natural altitude of 2500 m for 20-22 h/day (in fact, travelling down to the valley only for training) appears sufficient to increase erythropoiesis and improve sea-level performance. 'Longer is better' as regards haematological changes since additional benefits have been shown as hypoxic exposure increases beyond 16 h/day. The minimum daily dose for stimulating erythropoiesis seems to be 12 h/day. For non-haematological changes, the implementation of a much shorter duration of exposure seems possible. Athletes could take advantage of IHT, which seems more beneficial than IHE in performance enhancement. The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two...
In a large population of altitude visitors, chemosensitivity parameters (high desaturation and low ventilatory response to hypoxia at exercise) were independent predictors of severe high-altitude illness. They improved the discrimination ability of a risk prediction model.
Exposure to high altitude induces pulmonary hypertension that may lead to life-threatening conditions. In a randomized, double-blind, placebo-controlled study, the effects of oral sildenafil on altitude-induced pulmonary hypertension and gas exchange in normal subjects were examined. Twelve subjects (sildenafil [SIL] n = 6; placebo [PLA] n = 6) were exposed for 6 days at 4,350 m. Treatment (3 x 40 mg/day) was started 6 to 8 hours after arrival from sea level to high altitude and maintained for 6 days. Systolic pulmonary artery pressure (echocardiography) increased at high altitude before treatment (+29% versus sea level, p < 0.01), then normalized in SIL (-6% versus sea level, NS) and remained elevated in PLA (+21% versus sea level, p < 0.05). Pulmonary acceleration time decreased by 27% in PLA versus 6% in SIL (p < 0.01). Cardiac output and systemic blood pressures increased at high altitude then decreased similarly in both groups. Pa(O(2)) was higher and alveolar-arterial difference in O(2) lower in SIL than in PLA at rest and exercise (p < 0.05). The altitude-induced decrease in maximal O(2) consumption was smaller in SIL than in PLA (p < 0.05). Sildenafil protects against the development of altitude-induced pulmonary hypertension and improves gas exchange, limiting the altitude-induced hypoxemia and decrease in exercise performance.
The development of mining activities in North Chile involves a great number of workers intermittently exposed to high altitude for a long period of time (chronic intermittent hypoxia, CIH). A 2(1/2)-year prospective study aimed to characterize this model of exposure to CIH and to know whether this condition may progressively lead to a chronic pattern. Twenty-nine miners, aged 25 +/- 5 yr, working 7 days at HA (3800 to 4600 m) and resting 7 days at sea level (SL) were studied. Subjects underwent a physical examination, EKG, hematological status, maximal exercise test, ventilatory and cardiac response to hypoxia (F(iO2) = 0.114) at rest and exercise, pulmonary vascular response to hypoxia by echocardiography, and 24-h monitoring of EKG and arterial pressure. Basal evaluations were performed at SL before the first exposure to hypoxia. HA measurements were daily AMS score, sleep status, and 24-h monitoring of EKG and arterial pressure. All these measurements were repeated after a mean period of 12, 19, and 31 months. Hematocrit increased but reached values lower than those observed in chronic permanent exposure. Systemic and pulmonary arterial pressures measured at SL did not change, but were higher in hypoxia. Right ventricle showed a slight dilatation. Exercise performance at SL declined with exposure to CIH to reach a 12.3% decrease after 31 months of CIH, associated with a 6.8% decrease in maximal heart rate. Signs of ventilatory acclimatization were observed after 12 months. Symptoms of AMS and sleep disturbances were still seen on the first 2 days at HA, whatever the time of exposure to CIH. In conclusion, CIH induced a clear acclimatization process. Subjects did not reach a health status comparable to that seen in permanent residents at HA and remained at risk of acute altitude-induced illnesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.