Abstract. We analyze geomorphic evidence of recent crustal deformation in the subHimalaya of central Nepal, south of the Kathmandu Basin. The Main Frontal Thrust fault (MFT), which marks the southern edge of the sub-Himalayan fold belt, is the only active structure in that area. Active fault bend folding at the MFT is quantified from structural geology and fluvial terraces along the Bagmati and Bakeya Rivers. Two major and two minor strath terraces are recognized and dated to be 9.2, 2.2, and 6.2, 3.7 calibrated (cal) kyr old, respectively. Rock uplift of up to 1.5 cm/yr is derived from river incision, accounting for sedimentation in the Gangetic plain and channel geometry changes. Rock uplift profiles are found to correlate with bedding dip angles, as expected in fault bend folding. It implies that thrusting along the MFT has absorbed 21 _+ 1.5 mm/yr of N-S shortening on average over the Holocene period. The +1.5 mm/yr defines the 68% confidence interval and accounts for uncertainties in age, elevation measurements, initial geometry of the deformed terraces, and seismic cycle. At the longitude of Kathmandu, localized thrusting along the Main Frontal Thrust fault must absorb most of the shortening across the Himalaya. By contrast, microseismicity and geodetic monitoring over the last decade suggest that interseismic strain is accumulating beneath the High Himalaya, 50-100 km north of the active fold zone, where the Main Himalayan Thrust (MHT) fault roots into a ductile d•collement beneath southern Tibet. In the interseismic period the MHT is locked, and elastic deformation accumulates until being released by large (M w > 8) earthquakes. These earthquakes break the MHT up to the near surface at the front of the Himalayan foothills and result in incremental activation of the MFT.
Abstract. The pattern of fluvial incision across the Himalayas of central Nepal is estimated from the distribution of Holocene and Pleistocene terraces and from the geometry of modem channels along major rivers draining across the range. The terraces provide good constraints on incision rates across the Himalayan frontal folds (Sub-Himalaya or Siwaliks Hills) where rivers are forced to cut down into rising anticlines and have abandoned numerous strath terraces. Farther north and upstream, in the Lesser Himalaya, prominent fill terraces were deposited, probably during the late Pleistocene, and were subsequently incised. The amount of bedrock incision beneath the fill deposits is generally small, suggesting a slow rate of fluvial incision in the Lesser Himalaya. The terrace record is lost in the high range where the rivers are cutting steep gorges. To complement the terrace study, fluvial incision was also estimated from the modem channel geometries using an estimate of the shear stress exerted by the flowing water at the bottom of the channel as a proxy for river incision rate. This approach allows quantification of the effect of variations in channel slope, width, and discharge on the incision rate of a river; the determination of incision rates requires an additional lithological calibration.
We have studied geometries and rates of late Cenozoic thrust faulting and folding along the northern piedmont of the Tien Shan mountain belt, West of Urumqi, where the M=8.3 Manas earthquake occurred on December 23, 1906. The northern range of the Tien Shan, rising above 5000 m, overthrusts a flexural foredeep, filled with up to II ,000 m of sediment, of the Dzungarian basement. Our fieldwork reveals that the active thrust reaches the surface 30 km north of the range front, within a 200-km-long zone of NeogeneQuaternary anticlines. Fault scarps are clearest across inset terraces within narrow valleys incised through the anticlines by large rivers flowing down from the range. In all the valleys, the scarps offset vertically the highest terrace surface by the same amount (10.2±0.7 m). Inferring an early Holocene age (10±2 kyr) for this terrace, which is continuous with the largest recent fans of the piedmont, yields a rate of vertical throw of 1.0±0.3mm/yr on the main active thrust at the surface. A quantitative morphological analysis of the degradation of terrace edf,es that are offset by the thrust corroborates such a rate and yields a mass diffusivity of 5.5±2.5 m /kyr. A rather fresh surface scarp, 0.8±0.15 m high, that is unlikely to result from shallow earthquakes with 6 < M < 7 in the last 230 years, is visible at the extremities of the main fold zone. We associate this scarp with the 1906 Manas earthquake and infer that a structure comprising a deep basement ramp under the range, gently dipping flats in the foreland, and shallow ramps responsible for the formation of the active, fault propagation anticlines could have been activated by that earthquake. If so, the return period of a 1906 type event would be 850 ± 380 years. The small size of the scarp for an earthquake of this magnitude suggests that a large fraction of the slip at depth ( ""2/3) is taken up by incremental folding near the surface. Comparable earthquakes might activate flat detachments and ramp anticlines at a distance from the front of other rising Quaternary ranges such as the San Gabriel mountains in California or the Mont Blanc-Aar massifs in the Alps. We _,:stimate the finite Cenozoic shortening of the folded Dzungarian sediments to be of the order of 30 km and the Cenozoic shortening rate to have been 3 ± 1.5 mrnlyr. Assuming comparable shortening along the Tarim piedmont and minor additional active thrusting within the mountain belt, we infer the rate of shortening across the Tien Shan to be at least 6±3 mm/yr at the longitude of Manas (""85.5°E). A total shortening of 125±30 km is estimated from crustal thickening, assuming local Airy isostatic equilibrium. Under the same assumption, serial N-S sections imply that Cenozoic shortening across the belt increases westwards to 203±50 km at the longitude of Kashgar ( ""76°E), as reflected by the westward increase of the width of the belt. This strain gradient implies a clockwise rotation of Tarim relative to Dzungaria and Kazakhstan of 7 ± 2.5 • around a pole located near the eastern extr...
Abstract. The velocity field of present-day deformation in Central Asia is modelled using a set of four rotating blocks (Siberia, Tarim, Tibet, India) on a spherical earth. A best-fit is inverted on the basis of estimated shorteningrates across the main thrust zones (Himalayas, Tien Shan) and measured slip-rates along the principal strike-slip faults (Altyn Tagh and Karakorum) separating those blocks. The fit to the data implies that nearly all the present convergence between India and Asia can be accounted for by slip-partitioning on these four zones, with as much as 50% absorl:>ed by northeastwards extrusion of Tibet. This suggests that localised deformation governs the present mechanical bepaviour of the Central Asian lithosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.