As shown by transcriptional analysis of blood samples from human volunteers, injection with synthetic dsRNA (an agonist of the TLR3 and MDA5 pattern recognition receptors) triggered up-regulation of genes involved in innate immune pathways, similar to those induced by vaccination with the efficacious yellow fever vaccine.
The CARTaGENE (CaG) study is both a population-based biobank and the largest ongoing prospective health study of men and women in Quebec. In population-based cohorts, participants are not recruited for a particular disease but represent a random selection among the population, minimizing the need to correct for bias in measured phenotypes. CaG targeted the segment of the population that is most at risk of developing chronic disorders, that is 40-69 years of age, from four metropolitan areas in Quebec. Over 20,000 participants consented to visiting 1 of 12 assessment sites where detailed health and socio-demographic information, physiological measures and biological samples (blood, serum and urine) were captured for a total of 650 variables. Significant correlations of diseases and chronic conditions are observed across these regions, implicating complex interactions, some of which we describe for major chronic conditions. The CaG study is one of the few population-based cohorts in the world where blood is stored not only for DNA and protein based science but also for gene expression analyses, opening the door for multiple systems genomics approaches that identify genetic and environmental factors associated with disease-related quantitative traits. Interested researchers are encouraged to submit project proposals on the study website (www.cartagene.qc.ca).
Chronic viral infections lead to persistent CD8 T cell activation and functional exhaustion. Expression of programmed cell death-1 (PD-1) has been associated to CD8 T cell dysfunction in HIV infection. Herein we report that another negative regulator of T cell activation, CD160, was also upregulated on HIV-specific CD8 T lymphocytes mostly during the chronic phase of infection. CD8 T cells that expressed CD160 or PD-1 were still functional whereas co-expression of CD160 and PD-1 on CD8 T cells defined a novel subset with all the characteristics of functionally exhausted T cells. Blocking the interaction of CD160 with HVEM, its natural ligand, increased HIV-specific CD8 T cell proliferation and cytokine production. Transcriptional profiling showed that CD160−PD-1+CD8 T cells encompassed a subset of CD8+ T cells with activated transcriptional programs, while CD160+PD-1+ T cells encompassed primarily CD8+ T cells with an exhausted phenotype. The transcriptional profile of CD160+PD-1+ T cells showed the downregulation of the NFκB transcriptional node and the upregulation of several inhibitors of T cell survival and function. Overall, we show that CD160 and PD-1 expressing subsets allow differentiating between activated and exhausted CD8 T cells further reinforcing the notion that restoration of function will require multipronged approaches that target several negative regulators.
BackgroundTh17 cells are permissive to HIV-1 infection and their depletion from the gut of infected individuals leads to microbial translocation, a major cause for non-AIDS co-morbidities. Most recent evidence supports the contribution of long-lived Th17 cells to HIV persistence during antiretroviral therapy (ART). However, the identity of long-lived Th17 cells remains unknown.ResultsHere, we performed an in-depth transcriptional and functional characterization of four distinct Th17 subsets and investigated their contribution to HIV reservoir persistence during ART. In addition to the previously characterized CCR6+CCR4+ (Th17) and CCR6+CXCR3+ (Th1Th17) subsets, we reveal the existence of two novel CCR6+ subsets, lacking (double negative, CCR6+DN) or co-expressing CXCR3 and CCR4 (double positive, CCR6+DP). The four subsets shared multiple Th17-polarization markers, a fraction of cells proliferated in response to C. albicans, and exhibited lineage commitment and plasticity when cultured under Th17 and Th1 conditions, respectively. Of note, fractions of CCR6+DN and Th17 demonstrated stable Th17-lineage commitment under Th1-polarization conditions. Among the four subsets, CCR6+DN expressed a unique transcriptional signature indicative of early Th17 development (IL-17F, STAT3), lymph-node homing (CCR7, CD62L), follicular help (CXCR5, BCL6, ASCL2), and self-renewal (LEFI, MYC, TERC). Cross sectional and longitudinal studies demonstrated that CCR6+DN cells were the most predominant CCR6+ subset in the blood before and after ART initiation; high frequencies of these cells were similarly observed in inguinal lymph nodes of individuals receiving long-term ART. Importantly, replication competent HIV was isolated from CCR6+DN of ART-treated individuals.ConclusionsTogether, these results provide new insights into the functional heterogeneity of Th17-polarized CCR6+CD4+ T-cells and support the major contribution of CCR6+DN cells to HIV persistence during ART.Electronic supplementary materialThe online version of this article (doi:10.1186/s12977-016-0293-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.