In this paper, we use subword complexes to provide a uniform approach to finite-type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. For k = 1, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes of types A and B coincide with known simplicial complexes, namely with the simplicial complexes of multi-triangulations and centrally symmetric multi-triangulations, respectively. Furthermore, we show that the multi-cluster complex is universal in the sense that every spherical subword complex can be realized as a link of a face of the multi-cluster complex.
Abstract. Let W be an infinite Coxeter group. We initiate the study of the set E of limit points of "normalized" roots (representing the directions of the roots) of W. We show that E is contained in the isotropic cone Q of the bilinear form B associated to a geometric representation, and illustrate this property with numerous examples and pictures in rank 3 and 4. We also define a natural geometric action of W on E, and then we exhibit a countable subset of E, formed by limit points for the dihedral reflection subgroups of W . We explain how this subset is built from the intersection with Q of the lines passing through two positive roots, and finally we establish that it is dense in E.
In the recent study of infinite root systems, fractal patterns of ball packings were observed while visualizing roots in affine space. In this paper, we show that the observed fractals are exactly the ball packings described by Boyd and Maxwell. This correspondence is a corollary of a more fundamental result: Given a geometric representation of a Coxeter group in a Lorentz space, the set of limit directions of weights equals the set of limit roots. Additionally, we use Coxeter complexes to describe tangency graphs of the corresponding Boyd-Maxwell ball packings. Finally, we enumerate all the Coxeter systems that generate Boyd-Maxwell ball packings.2010 Mathematics Subject Classification. Primary 52C17, 20F55; Secondary 05C30.
In Phys. Rev. Lett. 2021, 127, 023001 a reduced density matrix functional theory (RDMFT) was proposed for calculating energies of selected eigenstates of interacting many-Fermion systems.Here, we develop a solid foundation for this so-called w-RDMFT and present the details of various derivations. First, we explain how a generalization of the Ritz variational principle to ensemble states with fixed weights w in combination with the constrained search would lead to a universal functional of the one-particle reduced density matrix. To turn this into a viable functional theory, however, we also need to implement an exact convex relaxation. This general procedure includes Valone's pioneering work on ground state RDMFT as the special case w = (1,0, •••). Then, we work out in a comprehensive manner a methodology for deriving a compact description of the functional's domain. This leads to a hierarchy of generalized exclusion principle constraints which we illustrate in great detail. By anticipating their future pivotal role in functional theories and to keep our work self-contained, several required concepts from convex analysis are introduced and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.