Over the recent years, the SMCHD1 (Structural Maintenance of Chromosome flexible Hinge Domain Containing 1) chromatin-associated factor has triggered increasing interest after the identification of variants in three rare and unrelated diseases, type 2 Facio Scapulo Humeral Dystrophy (FSHD2), Bosma Arhinia and Microphthalmia Syndrome (BAMS), and the more recently isolated hypogonadotrophic hypogonadism (IHH) combined pituitary hormone deficiency (CPHD) and septo-optic dysplasia (SOD). However, it remains unclear why certain mutations lead to a specific muscle defect in FSHD while other are associated with severe congenital anomalies. To gain further insights into the specificity of SMCHD1 variants and identify pathways associated with the BAMS phenotype and related neural crest defects, we derived induced pluripotent stem cells from patients carrying a mutation in this gene. We differentiated these cells in neural crest stem cells and analyzed their transcriptome by RNA-Seq. Besides classical differential expression analyses, we analyzed our data using MOGAMUN, an algorithm allowing the extraction of active modules by integrating differential expression data with biological networks. We found that in BAMS neural crest cells, all subnetworks that are associated with differentially expressed genes converge toward a predominant role for AKT signaling in the control of the cell proliferation–migration balance. Our findings provide further insights into the distinct mechanism by which defects in neural crest migration might contribute to the craniofacial anomalies in BAMS.
Progeroid syndromes are rare genetic diseases with most of autosomal dominant transmission, the prevalence of which is less than 1/10,000,000. These syndromes caused by mutations in the LMNA gene encoding A-type lamins belong to a group of disorders called laminopathies. Lamins are implicated in the architecture and function of the nucleus and chromatin. Patients affected with progeroid laminopathies display accelerated aging of mesenchymal stem cells (MSCs)–derived tissues associated with nuclear morphological abnormalities. To identify pathways altered in progeroid patients’ MSCs, we used induced pluripotent stem cells (hiPSCs) from patients affected with classical Hutchinson–Gilford progeria syndrome (HGPS, c.1824C>T—p.G608G), HGPS-like syndrome (HGPS-L; c.1868C>G—p.T623S) associated with farnesylated prelamin A accumulation, or atypical progeroid syndromes (APS; homozygous c.1583C> T—p.T528M; heterozygous c.1762T>C—p.C588R; compound heterozygous c.1583C>T and c.1619T>C—p.T528M and p.M540T) without progerin accumulation. By comparative analysis of the transcriptome and methylome of hiPSC-derived MSCs, we found that patient’s MSCs display specific DNA methylation patterns and modulated transcription at early stages of differentiation. We further explored selected biological processes deregulated in the presence of LMNA variants and confirmed alterations of age-related pathways during MSC differentiation. In particular, we report the presence of an altered mitochondrial pattern; an increased response to double-strand DNA damage; and telomere erosion in HGPS, HGPS-L, and APS MSCs, suggesting converging pathways, independent of progerin accumulation, but a distinct DNA methylation profile in HGPS and HGPS-L compared with APS cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.