Mammalian mitochondria contain about 1100 proteins, nearly 300 of which are uncharacterized. Given the well-established role of mitochondrial defects in human disease, functional characterization of these proteins may shed new light on disease mechanisms. Starting with yeast as a model system, we investigated an uncharacterized but highly conserved mitochondrial protein (named here Sdh5). Both yeast and human Sdh5 interact with the catalytic subunit of the succinate dehydrogenase (SDH) complex, a component of both the electron transport chain and the tricarboxylic acid cycle. Sdh5 is required for SDH-dependent respiration and for Sdh1 flavination (incorporation of the flavin adenine dinucleotide cofactor). Germline loss-of-function mutations in the human SDH5 gene, located on chromosome 11q13.1, segregate with disease in a family with hereditary paraganglioma, a neuroendocrine tumor previously linked to mutations in genes encoding SDH subunits. Thus, a mitochondrial proteomics analysis in yeast has led to the discovery of a human tumor susceptibility gene.
Although the authors of the present review have contributed to genetic discoveries in the field of pheochromocytoma research, we can legitimately ask whether these advances have led to improvements in the diagnosis and management of patients with pheochromocytoma. The answer to this question is an emphatic ! In the field of molecular genetics, the well-established axiom that familial (genetic) pheochromocytoma represents 10% of all cases has been overturned, with>35% of cases now attributable to germline disease-causing mutations. Furthermore, genetic pheochromocytoma can now be grouped into five different clinical presentation types in the context of the ten known susceptibility genes for pheochromocytoma-associated syndromes. We now have the tools to diagnose patients with genetic pheochromocytoma, identify germline mutation carriers and to offer gene-informed medical management including enhanced surveillance and prevention. Clinically, we now treat an entire family of tumors of the paraganglia, with the exact phenotype varying by specific gene. In terms of detection and classification, simultaneous advances in biochemical detection and imaging localization have taken place, and the histopathology of the paraganglioma tumor family has been revised by immunohistochemical-genetic classification by gene-specific antibody immunohistochemistry. Treatment options have also been substantially enriched by the application of minimally invasive and adrenal-sparing surgery. Finally and most importantly, it is now widely recognized that patients with genetic pheochromocytoma/paraganglioma syndromes should be treated in specialized centers dedicated to the diagnosis, treatment and surveillance of this rare neoplasm.
BackgroundGermline mutations of the succinate dehydrogenase subunit B gene (SDHB) predispose carriers for paragangliomas, and current estimates of the chance of mutation carriers actually developing tumors (penetrance) are high. We evaluate the phenotype and penetrance of a germline SDHB mutation in a large and clinically well-characterized paraganglioma family.MethodsFollowing identification of the mutation in a 31 year old index-patient, extensive clinical screening was performed in mutation carriers to evaluate the presence of head and neck, thoracic and abdominal paragangliomas. Presymptomatic DNA testing was performed in 19 family members.ResultsDNA analysis detected 14 further SDHB mutation carriers. Three mutation carriers (median age 78 years) declined clinical surveillance, but had no clinical signs or symptoms associated with paragangliomas. The remaining 11 mutation carriers (mean age 53, range 37-76 years) consented to clinical screening. In only two, aged 43 and 48 years, were subclinical vagal paragangliomas identified.ConclusionsOnly three of the fifteen mutation carriers in this family have developed paraganglioma, which results in a calculated penetrance of 26% at 48 years of age. This figure is lower than current estimates, and we conclude that the co-operation of this family allowed an almost complete attainment of mutation carriers, and the extensive clinical evaluation carried out allowed us to identify all affected individuals.
This study strengthens the etiological association of SDH genes with pituitary neoplasia, renal tumorigenesis, and gastric gastrointestinal stromal tumors. Furthermore, our results indicate that pancreatic neuroendocrine tumor also falls within the SDH-related tumor spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.