We report a series of Grand Canonical Monte Carlo simulations of water adsorption in NaY and NaX faujasite, as well as in silicalite-1. Computed adsorption isotherms and heats of adsorption were in good agreement with the available experiments. The existence of cyclic water hexamers in NaX located in the 12-ring windows, recently disclosed by neutron diffraction experiments (Hunger et al., J. Phys. Chem. B, 2006, 110, 342-353) was reproduced in our simulations. Interestingly enough, such cyclic hexamer clusters were also observed in the case of NaY, in which no stabilizing cation is present in the 12-ring window. We also report cation redistribution upon water adsorption for sodium faujasite with varying cation contents (Si ratio Al ratio in the range 1.53-3). A simple and transferable forcefield was used, that enabled to reproduce the different aspects of water physisorption in stable zeolites. The high pressure water condensation in hydrophobic silicalite-1 was reproduced without any parameter readjustment. The method and forcefield used here should be useful for engineering oriented applications such as the prediction of multi-component mixture adsorptive separations in various stable zeolites. It allows to address the issue of the effect of the small amounts of water that are almost inevitably present in zeolite-based separation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.