Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1⌬ atf2⌬ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.During fermentation processes, yeast cells produce a broad range of aroma-active substances which greatly affect the complex flavor of fermented alcoholic beverages. While these secondary metabolites are often formed only in trace amounts, their concentrations determine the distinct aroma of these beverages. Flavor-active substances produced by fermenting yeast cells can be divided into five main groups: sulfur-containing molecules, organic acids, higher alcohols, carbonyl compounds, and volatile esters (32,39,56,57,66). Of these categories, volatile esters represent the largest and most important group. They are responsible for the highly desired fruity character of beer and, to a lesser extent, other alcoholic beverages, such as wine.The major flavor-active esters in beer are acetate esters such as ethyl acetate (solvent-like aroma), isoamyl acetate (banana flavor), and phenylethyl acetate (flowery, rose aroma). In addition, C 6 -C 10 medium-chain fatty acid ethyl esters such as ethyl hexanoate (ethyl caproate) and ethyl octanoate (ethyl caprylate), which have "sour apple" aromas, are also important for the overall bouqu...
ReviewGas chromatography-olfactometry GC-olfactometry (GC-O) refers to the use of human assessors as a sensitive and selective detector for odour-active compounds. The aim of this technique is to determine the odour activity of volatile compounds in a sample extract, and assign a relative importance to each compound. Methods can be classified into three types: detection frequency, dilution to threshold and direct intensity. Dilution to threshold methods measure the potency of odour-active compounds by using a series of extract dilutions, whereas detection frequency and direct-intensity methods measure odouractive compound intensity, or relative importance, in a single concentrated extract. Factors that should be considered to improve the value of GC-O analysis are the extraction method, GC instrument conditions, including the design and operation of the odour port, methods of recording GC-O data and controlling the potential for human assessor bias using experimental design and a trained panel. Considerable emphasis is placed on the requirement for multidimensional GC analysis, and on best practice when using human assessors.
As they are responsible for the fruity character of fermented beverages, volatile esters constitute an important group of aromatic compounds in beer. In modern high-gravity fermentations, which are performed in tall cylindroconical vessels, the beer ester balance is often sub-optimal, resulting in a clear decrease in beer quality. Despite the intensive research aimed at unravelling the precise mechanism and regulation of ester synthesis, our current knowledge remains far from complete. However, a number of factors that influence flavor-active ester production have already been described, including wort composition, wort aeration and fermentor design. A thoughtful adaptation of these parameters allows brewers to steer ester concentrations and thus to control the fruity character of their beers. This paper reviews the current knowledge of the biochemistry behind yeast ester synthesis and discusses the different factors that allow ester formation to be controlled during brewery fermentation.
Detection was by UV absorbance (after pre-column derivatization of dehydroascorbic acid with l,Z-phenylenediamine). When absent, isoascorbic acid could be used as internal standard. Isocratic separation was accomplished in 11 min using the eluent, methanol-water (5:95, v/v) containing potassium dihydrogen phosphate (50 mM) and the counterion hexadecyltrimethylammonium bromide (5 mM). Sample preparation steps using Sep-pak Cl8 cartridge were minimal. Ten ppm could be detected for each compound with good reproducibility (c.v. < 2%). The method was used to determine vitamin C content in selected foods and beverages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.