The instability of a partial cavity induced by the development of a re-entrant jet is investigated on the basis of experiments conducted on a diverging step. Detailed visualizations of the cavity behaviour allowed us to identify the domain of the re-entrant jet instability which leads to classical cloud cavitation. The surrounding regimes are also investigated, in particular the special case of thin cavities which do not oscillate in length but surprisingly exhibit a re-entrant jet of periodical behaviour. The velocity of the re-entrant jet is measured from visualizations, in the case of both cloud cavitation and thin cavities. The limits of the domain of the re-entrant jet instability are corroborated by velocity fluctuation measurements. By varying the divergence and the confinement of the channel, it is shown that the extent of the auto-oscillation domain primarily depends upon the average adverse pressure gradient in the channel. This conclusion is corroborated by the determination of the pressure gradient on the basis of LDV measurements which shows a good correlation between the domain of the cloud cavitation instability and the region of high adverse pressure gradient. A simple phenomenological model of the development of the re-entrant jet in an adverse pressure gradient confirms the strong influence of the pressure gradient on the development of the re-entrant jet and particularly on its thickness. An ultrasonic technique is developed to measure the re-entrant jet thickness, which allowed us to compare it with the cavity thickness. By considering an estimate of the characteristic height of the perturbations developing on the interface of the cavity and of the re-entrant jet, it is shown that cloud cavitation requires negligible interaction between both interfaces, i.e. a thick enough cavity. In the case of thin cavities, this interaction becomes predominant; the cavity interface breaks at many points, giving birth to small-scale vapour structures unlike the large-scale clouds which are periodically shed in the case of cloud cavitation. The low-frequency content of the cloud cavitation instability is investigated using spectral analysis of wall pressure signals. It is shown that the characteristic frequency of cloud cavitation corresponds to a Strouhal number of about 0.2 whatever the operating conditions and the cavity length may be, provided the Strouhal number is computed on the basis of the maximum cavity length. For long enough cavities, another peak is observed in the spectra, at lower frequency, which is interpreted as a surge-type instability. The present investigations give insight into the instabilities that a partial cavity may undergo, and particularly the re-entrant jet instability. Two parameters are shown to be of most importance in the analysis of the re-entrant jet instability: the adverse pressure gradient and the cavity thickness compared to the re-entrant jet thickness. The present results allowed us to conduct a qualitative phenomenological analysis of the stability of partial cavities on cavitating hydrofoils. It is conjectured that cloud cavitation should occur for short enough cavities, of the order of half the chordlength, whereas the instability often observed at the limit between partial cavitation and super-cavitation is here interpreted as a cavitation surge-type instability.
A phenomenological analysis of the cavitation erosion process of ductile materials is proposed. On the material side, the main parameters are the thickness of the hardened layer together with the conventional yield strength and ultimate strength. On the fluid side, the erosive potential of the cavitating flow is described in a simplified way using three integral parameters: rate, mean amplitude, and mean size of hydrodynamic impact loads. Explicit equations are derived for the computation of the incubation time and the steady-state erosion rate. They point out two characteristic scales. The time scale, which is relevant to the erosion phenomenon, is the covering time—the time necessary for the impacts to cover the material surface—whereas the pertinent length scale for ductile materials is the thickness of the hardened layer. The incubation time is proportional to the covering time with a multiplicative factor, which strongly depends on flow aggressiveness in terms of the mean amplitude of impact loads. As for the erosion rate under steady-state conditions, it is scaled by the ratio of the thickness of hardened layers to the covering time with an additional dependence on flow aggressiveness, too. The approach is supported by erosion tests conducted in a cavitation tunnel at a velocity of 65 m/s on stainless steel 316 L. Flow aggressiveness is inferred from pitting tests. The same model of material response that was used for mass loss prediction is applied to derive the original hydrodynamic impact loads due to bubble collapses from the geometric features of the pits. Long duration tests are performed in order to determine experimentally the incubation time and the mean depth of penetration rate and to validate the theoretical approach.
The thermal effects which affect the development of leading edge cavitation in an inducer were investigated experimentally using refrigerant R114. For different operating conditions, the evolution of the cavity length with the cavitation parameter was determined from visualizations. The tests were conducted up to two-phase breeding. The comparison of tests in R114 and in cold water allowed us to estimate the amplitude of the thermodynamic effect. The results show that the B-factor depends primarily upon the degree of development of cavitation but not significantly upon other parameters such as the inducer rotation speed or the fluid temperature, at least in the present domain of investigation. These trends are qualitatively in agreement with the classical entrainment theory. In addition, pressure fluctuations spectra were determined in order to detect the onset of cavitation instabilities and particularly of alternate blade cavitation and rotating cavitation. If the onset of alternate blade cavitation appeared to be connected to a critical cavity length, the results are not so clear concerning the onset of rotating cavitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.