Monocyte-derived macrophages (MoMØ) and monocyte-derived dendritic cells (MoDC) are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect myeloid cells, such as macrophages (MØ) and dendritic cells (DC). Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated MoMØ were stimulated with activators for classical (M1) or alternative (M2) activation. GM-CSF and IL-4 generated MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype, and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells toward PRRSV-1 infection.
Porcine reproductive and respiratory syndrome (PRRS) continues to be the most economically important disease of swine worldwide. The appearance of highly pathogenic PRRS virus (PRRSV) strains in Europe and Asia has raised concerns about this disease and initiated increased efforts to understand the pathogenesis. In this study, we have compared the pathology and the virus distribution in tissues of pigs experimentally inoculated with three different genotype 1 PRRSV isolates. Sixty 5-week-old pigs were inoculated intranasally with a) the Lelystad virus (LV), b) a field strain from the UK causing respiratory clinical signs (UK) or c) a highly pathogenic strain from Belarus (BE). Sixteen animals were mock-infected and used as controls. The animals were euthanized at 3, 7 and 35 days post-infection (dpi), and lung and lymphoid tissues collected for histopathological examination and PRRSV detection by immunohistochemistry (IHC). Histopathological lesions consisted of interstitial pneumonia with mononuclear cell infiltrates in the lungs, lymphoid depletion, apoptosis and follicular hyperplasia in the spleen, lymph nodes and tonsil and lymphoid depletion in the thymus. Porcine reproductive and respiratory syndrome virus was detected mainly in monocytes-macrophages. BE-infected animals showed the highest pathological scores and the highest presence of virus at 3 and 7 dpi, followed by the UK field strain and then LV. Moderate lesions were observed at 35 dpi with lesser detection of PRRSV by IHC in each infected group. The highly pathogenic BE strain induced more severe pathology in both lungs and lymphoid organs of pigs compared with the classic field isolate and the prototype LV. The increased severity of pathology was in correlation with the presence of a higher number of PRRSV-infected cells in the tissues.
Porcine Epidemic Diarrhea Virus (PEDV) is a member of the genus Alphacoronavirus, in the family Coronaviridae, of the Nidovirales order and outbreaks of porcine epidemic diarrhoea (PED) were first recorded in England in the 1970s. Intriguingly the virus has since successfully made its way around the globe, while seemingly becoming extinct in parts of Europe before its recent return from Northern America. In this review we are re-evaluating the spread of PEDV, its biology and are looking at lessons learnt from both failure and success. While a new analysis of PEDV genomes demonstrates a wider heterogeneity of PEDV than previously anticipated with at least five rather than two genotypes, biological features of the virus and its replication also point towards credible control strategies to limit the impact of this re-emerging virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.