In Drosophila melanogaster females, pigmentation of the abdominal tergites exhibits a large phenotypic variability which depends on growth temperature. The phenotypic plasticity of this trait was investigated in a European population, using isofemale lines, by rearing the larvae and pupae at 6 different temperatures ranging from 14 to 31" C. For the last three abdominal segments (5, 6 and 7), the dark pigmented area decreases when growth temperature increases. However, the shapes of the response curves are significantly different, as shown by analysing slope variations, suggesting that genes interact differently in regulating the phenotypic expression of successive segments.Also, the correlation between the values of the same line at two temperatures exhibited a decrease proportional to the temperature interval considered. Genetic variability between lines was analyzed by calculating the coefficient of intraclass correlation, t. This parameter was not influenced by growth temperature and, according to the segment, ranged from 0.40 to 0.54. Such high values suggest a large proportion of non-additive effects. A multivariate analysis helped to visualize the diversity of the reaction norms among lines. Overall pigmentation variations are presumed to have an adaptive significance, related to the thermal balance of adult flies; on the other hand, the differences between segments could reflect developmental constraints without a direct adaptive value.
Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa.
The nature of pigments in naturally colored pearls is still under discussion. For this study, Raman scattering measurements were obtained for 30 untreated freshwater cultured pearls from the mollusk Hyriopsis cumingi covering their typical range of colors. The originality of this work is that seven different excitation wavelengths (1064 nm, 676.44 nm, 647.14 nm, 514.53 nm, 487.98 nm, 457.94 nm, 363.80 nm) are used for the same samples at the highest possible resolution. All colored pearls show the two major Raman features of polyenic compounds assigned to double carbon-carbon (C C) -at about 1500 cm −1 -and single carbon-carbon (C-C) -at about 1130 cm −1 -bond stretching mode, regardless of their specific hue. These peaks are not detected in the corresponding white pearls, and therefore seem directly related to the major cause of body color. Additionally, the exact position of C C stretching vibration shows that these compounds are not members of the carotenoid family. Moreover, some changes are observed in intensities, shape and positions of the two main characteristic polyenic peaks from one sample to the next. Similar changes are observed also using several excitation wavelengths for the same point of the same pearl. The exact position of C-C stretching vibration of polyenic molecules depends strongly on the number of double bonds (N) contained in their polyenic chain. Hence, using a constrained decomposition of this band for different excitation wavelengths, up to nine different pigments may be detected in the same pearl. Their general chemical formula is R-(-CH CH-) N -R with N = 6-14. All our colored samples contained at least four pigments (N = 8-11). Different colors are explained by different mixtures, not by a simple change of pigment. The chemical nature of the chain ends is still unknown, because it cannot be detected with Raman scattering. However, it is possible that these polyenes are complexed with carbonate molecules of the nacre. Similar coloration mechanisms are found in products from other living organisms (e.g. parrots feathers). Moreover, it seems that a similar series of pigments is found in other pearls also, as well as in some marine animals living in similar environments (e.g. corals).
Abstracti mb_930 5..12AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.