Free ADP-ribose (ADPR), a product of NAD hydrolysis and a breakdown product of the calcium-release second messenger cyclic ADPR (cADPR), has no defined role as an intracellular signalling molecule in vertebrate systems. Here we show that a 350-amino-acid protein (designated NUDT9) and a homologous domain (NUDT9 homology domain) near the carboxy terminus of the LTRPC2/TrpC7 putative cation channel both function as specific ADPR pyrophosphatases. Whole-cell and single-channel analysis of HEK-293 cells expressing LTRPC2 show that LTRPC2 functions as a calcium-permeable cation channel that is specifically gated by free ADPR. The expression of native LTRPC2 transcripts is detectable in many tissues including the U937 monocyte cell line, in which ADPR induces large cation currents (designated IADPR) that closely match those mediated by recombinant LTRPC2. These results indicate that intracellular ADPR regulates calcium entry into cells that express LTRPC2.
Recent advances in the structural analysis of the genes and proteins for immunoglobulin Fc domain receptors have provided a molecular characterization of this complex family. The wide cellular distribution of these receptors and their functional heterogeneity are reflected in the diversity of molecules which bind antibody and immune complexes. The detailed analysis of the IgG and IgE Fc receptors has indicated that these molecules have evolved from a common precursor through gene duplication. Similarities among these receptors, in both structure and function have emerged. Thus, the Fc receptors provide an example of a class of molecules in which conserved domains are combined with divergent sequences to yield a diversity of function.
Calcium-activated nonselective (CAN) cation channels are expressed in various excitable and nonexcitable cells supporting important cellular responses such as neuronal bursting activity, fluid secretion, and cardiac rhythmicity. We have cloned and characterized a second form of TRPM4, TRPM4b, a member of the TRP channel family, as a molecular candidate of a CAN channel. TRPM4b encodes a cation channel of 25 pS unitary conductance that is directly activated by [Ca2+]i with an apparent K(D) of approximately 400 nM. It conducts monovalent cations such as Na+ and K+ without significant permeation of Ca2+. TRPM4b is activated following receptor-mediated Ca2+ mobilization, representing a regulatory mechanism that controls the magnitude of Ca2+ influx by modulating the membrane potential and, with it, the driving force for Ca2+ entry through other Ca2+-permeable pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.