The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space‐based perspective, necessary to advance them.
Abstract.Evapotranspiration is an important component of the water cycle, especially in semi-arid lands. A way to quantify the spatial distribution of evapotranspiration and water stress from remote-sensing data is to exploit the available surface temperature as a signature of the surface energy balance. Remotely sensed energy balance models enable one to estimate stress levels and, in turn, the water status of continental surfaces. Dual-source models are particularly useful since they allow derivation of a rough estimate of the water stress of the vegetation instead of that of a soil-vegetation composite. They either assume that the soil and the vegetation interact almost independently with the atmosphere (patch approach corresponding to a parallel resistance scheme) or are tightly coupled (layer approach corresponding to a series resistance scheme). The water status of both sources is solved simultaneously from a single surface temperature observation based on a realistic underlying assumption which states that, in most cases, the vegetation is unstressed, and that if the vegetation is stressed, evaporation is negligible. In the latter case, if the vegetation stress is not properly accounted for, the resulting evaporation will decrease to unrealistic levels (negative fluxes) in order to maintain the same total surface temperature. This work assesses the retrieval performances of total and component evapotranspiration as well as surface and plant water stress levels by (1) proposing a new dual-source model named Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) in two versions (parallel and series resistance networks) based on the TSEB (Two-Source Energy Balance model, Norman et al., 1995) model rationale as well as state-of-the-art formulations of turbulent and radiative exchange, (2) challenging the limits of the underlying hypothesis for those two versions through a synthetic retrieval test and (3) testing the water stress retrievals (vegetation water stress and moisture-limited soil evaporation) against in situ data over contrasted test sites (irrigated and rainfed wheat). We demonstrated with those two data sets that the SPARSE series model is more robust to component stress retrieval for this cover type, that its performance increases by using bounding relationships based on potential conditions (root mean square error lowered by up to 11 W m −2 from values of the order of 50-80 W m −2 ), and that soil evaporation retrieval is generally consistent with an independent estimate from observed soil moisture evolution.
This article presents the MISTIGRI project of a microsatellite developed by the French space agency Centre National d'Etudes Spatiales (CNES) in cooperation with Spain (Image Processing Laboratory of the University of Valencia and Centro para el Desarrollo Tecnológico Industrial (CDTI)). MISTIGRI is a mission that has the originality of combining a high spatial resolution (∼50 m) with a daily revisit in the thermal infrared (TIR). MISTIGRI is an experimental mission devoted to demonstrate the potential of such TIR data for future operational missions. The scientific goals and expected applications of the mission are described: they encompass the monitoring of (i) agricultural areas and related hydrological processes, (ii) urban areas, and (iii) coastal areas and continental waters. Then, the specifications on spatial resolution, revisit frequency, overpass time, and spectral configuration are justified. The strategy of the mission is based on the combination with a network of long-term experimental sites. It will also make possible observing some areas facing rapid climatic change. The choice of the orbit is presented. Finally, we give rapid overviews of both the instrumental concept and the proposed mission architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.