Nanopore-based single-molecule detection and analysis have been pursued intensively over the past decade. One of the most promising applications in this regard is DNA sequencing achieved through DNA translocation-induced blockades in ionic current. Recently, nanopores fabricated in graphene sheets were used to detect double-stranded DNA. Due to its sub-nanometer thickness, graphene nanopores show great potential to realize DNA sequencing at single-base resolution. Resolving at the atomic level electric field-driven DNA translocation through graphene nanopores is crucial to guide the design of graphene-based sequencing devices. Molecular dynamics simulations, in principle, can achieve such resolution and are employed here to investigate the effects of applied voltage, DNA conformation and sequence as well as pore charge on the translocation characteristics of DNA. We demonstrate that such simulations yield current characteristics consistent with recent measurements and suggest that under suitable bias conditions A-T and G-C base pairs can be discriminated using graphene nanopores.
Blue energy relies on the chemical potential difference generated between solutions of high and low ionic strength and would provide a sun-and-wind independent energy source at estuaries around the world. Converting this osmotic energy through reverse-electrodialysis relies on ion-selective membranes. A novel generation of these membranes is based on atomically thin MoS2 membranes to decrease the resistance to current flow to increase power output. By modulating the surface charge by light we are able to raise the ion selectivity of the membrane by a factor of 5 while staying at a neutral pH. Furthermore, we find that the behavior of small nanopores is dominated by surface conductance. We introduce a formalism based on the Dukhin number to quantify these effects in the case of a concentration gradient system. As a consequence, the charges created by light illumination provoke two important changes. Increased surface charge at the pore rim enhances the ion selectivity and therefore larger osmotic voltage (dominating in small pores), while the increased surface charge of the overall membrane enhances the surface conductance and therefore the osmotic current (dominating in larger pores). The combination of these effects might be able to efficiently boost the energy generation with arrays of nanopores with varying pore sizes.
We show that the local temperature dependence of thermalized electron and phonon populations along metallic carbon nanotubes is the main reason behind the nonlinear transport characteristics in the high bias regime. Our model is based on the solution of the Boltzmann transport equation considering both optical and zone boundary phonon emission as well as absorption by charge carriers. It also assumes a local temperature along the nanotube, determined self-consistently with the heat transport equation. By using realistic transport parameters, our results not only reproduce experimental data for electronic transport but also provide a coherent interpretation of thermal breakdown under electric stress. In particular, electron and phonon thermalization prohibits ballistic transport in short nanotubes.
A long-standing problem in the application of solidstate nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate the geometrical effect of the nanopore shape on ionic blockage induced by DNA translocation using triangular h-BN nanopores and approximately circular molybdenum disulfide (MoS 2 ) nanopores. We observe a striking geometrydependent ion scattering effect, which is further corroborated by a modified ionic blockage model. The well-acknowledged ionic blockage model is derived from uniform ion permeability through the 2D nanopore plane and hemisphere like access region in the nanopore vicinity. On the basis of our experimental results, we propose a modified ionic blockage model, which is highly related to the ionic profile caused by geometrical variations. Our findings shed light on the rational design of 2D nanopores and should be applicable to arbitrary nanopore shapes.
We show that a semiconductor membrane made of two thin layers of opposite (n-and p-) doping can perform electrically tunable ion current rectification and filtering in a nanopore. Our model is based on the solution of the 3D Poisson equation for the electrostatic potential in a double-cone nanopore, combined with a transport model. It predicts that for appropriate biasing of the membrane-electrolyte system, transitions from ohmic behavior to sharp rectification with vanishing leakage current are achievable. Further more, ion current rectifying and filtering regimes of the nanopore correspond to different charge states in the p − n membrane which can be tuned with appropriate biasing of the n-and p-layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.