Although the concepts of jacobian matrix, manipulability and condition number have been floating around since the early beginning of robotics their real significance is not always well understood, although these conditioning indices play an important role e.g. for optimal robot design. In this paper we re-visit these concepts for parallel robots and exhibit some surprising results (at least for the author!) that show that these concepts have to be manipulated with care for a proper understanding of the kinematics behavior of a robot.
We give a constructive and exhaustive definition of Kochen-Specker (KS) vectors in a Hilbert space of any dimension as well as of all the remaining vectors of the space. KS vectors are elements of any set of orthonormal states, i.e., vectors in n-dim Hilbert space, H n , n ≥ 3 to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such KS vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in R n , on algorithms that single out those diagrams on which algebraic 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors were generated and described, all 3-dim vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found.
We consider in this paper a Gough-type parallel robot and we present an efficient algorithm based on interval analysis that allows us to solve the forward kinematics, i.e., to determine all the possible poses of the platform for given joint coordinates. This algorithm is numerically robust as numerical round-off errors are taken into account; the provided solutions are either exact in the sense that it will be possible to refine them up to an arbitrary accuracy or they are flagged only as a "possible" solution as either the numerical accuracy of the computation does not allow us to guarantee them or the robot is in a singular configuration. It allows us to take into account physical and technological constraints on the robot (for example, limited motion of the passive joints). Another advantage is that, assuming realistic constraints on the velocity of the robot, it is competitive in term of computation time with a real-time algorithm such as the Newton scheme, while being safer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.