We study bound states of two fermions with opposite spins in an extended Hubbard chain. The particles interact when located both on a site or on adjacent sites. We find three different types of bound states. Type U is predominantly formed of basis states with both fermions on the same site, while two states of type V originate from both fermions occupying neighbouring sites. Type U, and one of the states from type V, are symmetric with respect to spin flips. The remaining one from type V is antisymmetric. V-states are characterized by a diverging localization length below some critical wave number. All bound states become compact for wave numbers at the edge of the Brilloin zone.
We study the spectrum and eigenstates of the quantum discrete Bose-Hubbard Hamiltonian in a finite one-dimensional lattice containing two bosons. The interaction between the bosons leads to an algebraic localization of the modified extended states in the normal mode space of the noninteracting system. Weight functions of the eigenstates in the space of normal modes are computed by using numerical diagonalization and perturbation theory. We find that staggered states do not compactify in the dilute limit for large chains.
We study instabilities and relaxation to equilibrium in a long-range extension of the Fermi-Pasta-Ulam-Tsingou (FPU) oscillator chain by exciting initially the lowest Fourier mode. Localization in mode space is stronger for the long-range FPU model. This allows us to uncover the sporadic nature of instabilities, i.e., by varying initially the excitation amplitude of the lowest mode, which is the control parameter, instabilities occur in narrow amplitude intervals. Only for sufficiently large values of the amplitude, the system enters a permanently unstable regime. These findings also clarify the long-standing problem of the relaxation to equilibrium in the short-range FPU model. Because of the weaker localization in mode space of this latter model, the transfer of energy is retarded and relaxation occurs on a much longer timescale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.