Background: During a period of rapid growth in our understanding of the microbiology of the built environment in recent years, the majority of research has focused on bacteria and fungi. Viruses, while probably as numerous, have received less attention. In response, the Alfred P. Sloan Foundation supported a workshop entitled "Viruses in the Built Environment (VIBE)," at which experts in environmental engineering, environmental microbiology, epidemiology, infection prevention, fluid dynamics, occupational health, metagenomics, and virology convened to synthesize recent advances and identify key research questions and knowledge gaps regarding viruses in the built environment. Results: Four primary research areas and funding priorities were identified. First, a better understanding of viral communities in the built environment is needed, specifically which viruses are present and their sources, spatial and temporal dynamics, and interactions with bacteria. Second, more information is needed about viruses and health, including viral transmission in the built environment, the relationship between virus detection and exposure, and the definition of a healthy virome. The third research priority is to identify and evaluate interventions for controlling viruses and the virome in the built environment. This encompasses interactions among viruses, buildings, and occupants. Finally, to overcome the challenge of working with viruses, workshop participants emphasized that improved sampling methods, laboratory techniques, and bioinformatics approaches are needed to advance understanding of viruses in the built environment. Conclusions: We hope that identifying these key questions and knowledge gaps will engage other investigators and funding agencies to spur future research on the highly interdisciplinary topic of viruses in the built environment. There are numerous opportunities to advance knowledge, as many topics remain underexplored compared to our understanding of bacteria and fungi.
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.