The shear strength of concrete-rock interface is a key factor to evaluate the stability of gravity dams. The shear strength assessment by achieving tests on small samples gives values different from those estimated by back-analysis on the existing dams. This work aims to study the shear behaviour of concrete-rock interface in the metric scale. Five direct shear tests were performed on bonded meterscale concrete-granite interfaces in the range of normal stresses to which gravity dam foundation is subjected. Specific instrumentation were installed to monitor the failure mechanisms during the tests. The five concrete-rock interfaces have not broken by shearing of materials (concrete, rock) in the shear plane imposed by the test device, but by debonding of the contact between concrete and rock. Considering roughness of the contact surface in the decimeter scale and the results of shear tests carried out in the same scale, the decimeter scale is demonstrated to correspond to the elementary surface for the shear behaviour of the metric concrete-rock interface. According to the level of normal stress, the stiffness of both materials and the main asperities in the decimeter scale, different failure mechanisms occur locally to justify the overall failure in the metric scale.
The shear strength of concrete-rock interface is a key factor to evaluate the stability of gravity dams. The shear strength assessment by achieving tests on small samples gives values different from those estimated by back-analysis on the existing dams. This work aims to study the shear behaviour of concrete-rock interface in the metric scale. Five direct shear tests were performed on bonded meterscale concrete-granite interfaces in the range of normal stresses to which gravity dam foundation is subjected. Specific instrumentation were installed to monitor the failure mechanisms during the tests. The five concrete-rock interfaces have not broken by shearing of materials (concrete, rock) in the shear plane imposed by the test device, but by debonding of the contact between concrete and rock. Considering roughness of the contact surface in the decimeter scale and the results of shear tests carried out in the same scale, the decimeter scale is demonstrated to correspond to the elementary surface for the shear behaviour of the metric concrete-rock interface. According to the level of normal stress, the stiffness of both materials and the main asperities in the decimeter scale, different failure mechanisms occur locally to justify the overall failure in the metric scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.