Nitric oxide (NO) deficiency has been implicated in many pathological and physiological processes within the mammalian body providing a plausible biologic basis for the use of NO replacement therapy in these conditions. Exogenous NO sources may hopefully constitute a powerful way to supplement NO when the body cannot generate enough for normal biological functions. This theory has opened up the possibility of designing new drugs that are capable of delivering NO into tissues and the bloodstream in a sustained and controlled manner. This objective has been reached by grafting an organic nitrate structure onto existing molecules with various spacers such as aliphatic or aromatic chain, with different degree of complexity. This approach has led to the synthesis of several new chemical entities in various pharmacological classes, whose profile seems to challenge the parent drug not only on the basis of new pharmacological properties but also on a better toxicological and safety profile. In this article, general aspects on NO and NO donors are reviewed. Major focus is placed upon recent developments of novel NO donors, NO releasing device(s) as well as innovative improvements to conventional NO donors. Several examples are given in some important therapeutic indications such as cardiovascular diseases (NO-aspirin), pain and inflammation (NO-paracetamol), osteoporosis and urinary incontinence (NO flurbiprofen with aliphatic spacer), Alzheimer s disease (NO-flurbiprofen with anti-oxidant spacer), respiratory disorders (NO-steroids).
SummaryThe effects of NCX 4050, a drug belonging to a new class of NO donors, was investigated in isolated preparations of human and rabbit corpus cavernosum (CC) and in human foetal corpora cavernosa (hfCC) smooth muscle cells. In strips of rabbit CC, NCX 4050 (0.001-100 lM) induced a concentration-dependent relaxation which was influenced neither by Nw-nitro-L-arginine-methyl-ester (L-NAME; 100 lM) nor by endothelium deprivation. The NCX 4050-induced relaxation was significantly reduced by the guanylate cyclase inhibitor 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 lM) and enhanced by a specific phosphodiesterase 5 inhibitor, sildenafil (300 nM). Moreover, NCX 4050 (0.01-1 lM), induced a concentration-dependent potentiation of the relaxant response induced by electrical field stimulation (EFS) in rabbit preparations pre-treated with guanethidine and indomethacin. The relaxant effect of NCX 4050 was similar to that obtained by increasing concentrations (0.001-100 lM) of sodium nitroprusside (SNP) in either rabbit or human preparations. To further investigate the activity of NCX 4050 on human corpora cavernosa, we exposed cultured hfCC smooth muscle cells to increasing concentrations of NCX 4050 and SNP. We found that both compounds dose-dependently reduced cell proliferation. The antiproliferative effect of all the concentration tested of NCX 4050 was completely blocked by ODQ (1 lM). These results suggest that in rabbit and human corpora cavernosa NCX 4050 acts by activating guanylate cyclase activity, induces smooth muscle relaxation and quiescence. Our results provide a rationale for a possible future use of NCX 4050 in the pharmacotherapy of erectile dysfunction linked to an impaired release of NO from the endothelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.