What neural mechanism underlies the capacity to understand the emotions of others? Does this mechanism involve brain areas normally involved in experiencing the same emotion? We performed an fMRI study in which participants inhaled odorants producing a strong feeling of disgust. The same participants observed video clips showing the emotional facial expression of disgust. Observing such faces and feeling disgust activated the same sites in the anterior insula and to a lesser extent in the anterior cingulate cortex. Thus, as observing hand actions activates the observer's motor representation of that action, observing an emotion activates the neural representation of that emotion. This finding provides a unifying mechanism for understanding the behaviors of others.
Neural correlates of responses to emotionally valenced olfactory, visual, and auditory stimuli were examined using positron emission tomography. Twelve volunteers were scanned using the water bolus method. For each sensory modality, regional cerebral blood flow (rCBF) during presentation of both pleasant and unpleasant stimuli was compared with that measured during presentation of neutral stimuli. During the emotionally valenced conditions, subjects performed forced-choice pleasant and unpleasant judgments. During the neutral conditions, subjects were asked to select at random one of a two key-press buttons. All stimulations were synchronized with inspiration, using an airflow olfactometer, to present the same number of stimuli for each sensory modality. A no-stimulation control condition was also performed in which no stimulus was presented. For all three sensory modalities, emotionally valenced stimuli led to increased rCBF in the orbitofrontal cortex, the temporal pole, and the superior frontal gyrus, in the left hemisphere. Emotionally valenced olfactory and visual but not auditory stimuli produced additional rCBF increases in the hypothalamus and the subcallosal gyrus. Only emotionally valenced olfactory stimuli induced bilateral rCBF increases in the amygdala. These findings suggest that pleasant and unpleasant emotional judgments recruit the same core network in the left hemisphere, regardless of the sensory modality. This core network is activated in addition to a number of circuits that are specific to individual sensory modalities. Finally, the data suggest a superior potency of emotionally valenced olfactory over visual and auditory stimuli in activating the amygdala.Key words: emotion; hedonic judgment; odor processing; visual processing; auditory processing; PET Everyday, we make numerous judgments about the pleasantness or unpleasantness of external sensory stimuli. Exposure to such stimuli can induce subjective emotional experiences such as pleasure or fear and behavioral responses aimed at engaging or avoiding continued exposure. Neurobehavioral studies in animals have historically implicated structures related to the limbic system in these emotional processes, with a particular emphasis on the amygdala and hypothalamus (LeDoux, 1987(LeDoux, , 1995Davis, 1992;Rolls, 1999). Electrophysiological and lesion studies also indicate that the orbitofrontal cortex (OFC) makes a significant contribution to these processes in animals (Zald and Kim, 1996b;Rolls, 1999).Several recent neuroimaging studies have attempted to delineate the cortical and subcortical regions involved in processing emotionally valenced stimuli in humans. Such studies have examined responses to pleasant and/or unpleasant visual (Cahill et al
The mammalian olfactory bulb is characterized by prominent oscillatory activity of its local field potentials. Breathing imposes the most important rhythm. Other rhythms have been described in the beta- and gamma-frequency ranges. We recorded unitary activities in different bulbar layers simultaneously with local field potentials in order to examine the different relationships existing between (i) breathing and field potential oscillations, and (ii) breathing and spiking activity of different cell types. We show that, whatever the layer, odour-induced gamma oscillations always occur around the transition point between inhalation and exhalation while beta oscillations appear during early exhalation and may extend up to the end of inhalation. By contrast, unitary activities exhibit different characteristics according to the layer. They vary in (i) their temporal relationship with respect to the respiratory cycle; (ii) their spike rates; (iii) their temporal patterns defined according to the respiratory cycle. The time window of a respiratory cycle might thus be split into three main epochs based on the deceleration of field potential rhythms (from gamma to beta oscillations) and a simultaneous gradient of spike discharge frequencies ranging from 180 to 30 Hz. We discuss the possibility that each rhythm could serve different functions as priming, gating or tuning for the bulbar network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.