International audienceGlobal Level-3 surface soil moisture (SM) maps derived from the passive microwave SMOS (Soil Moisture and Ocean Salinity) observations at L-band have recently been released. In this study, a comparative analysis of this Level 3 product (referred to as SMOSL3) along with another Surface SM (SSM) product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) at C-band is presented (this latter product is referred to as AMSRM). SM-DAS-2, a SSM product produced by the European Centre for Medium Range Weather Forecasts (ECMWF) Land Data Assimilation System (LDAS) was used to monitor both SMOSL3 and AMSRM qualities. The present study was carried out from 03/2010 to 09/2011, a period during which both SMOS and AMSR-E products were available at global scale. Three statistical metrics were used for the evaluation; the correlation coefficient (R), the Root Mean Squared Difference (RMSD), and the bias. Results were analysed using maps of biomes and Leaf Area Index (LAI). It is shown that both SMOSL3 and AMSRM captured well the spatio-temporal variability of SM-DAS-2 for most of the biomes. In terms of correlation values, the SMOSL3 product was found to better capture the SSM temporal dynamics in highly vegetated biomes ("tropical humid", "temperate humid", etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ("desert temperate", "desert tropical", etc.). Finally, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (marginally better) SSM products correlated well with the SM-DAS-2 product over regions with sparse vegetation for values of LAI ≤ 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI >1, SMOSL3 showed better correlations with SM-DAS-2 than AMSRM: SMOSL3 had a consistent performance up to LAI = 6, whereas the AMSRM performance deteriorated with increasing values of LAI. This study reveals that SMOS and AMSR-E complement one another in monitoring SSM over a wide range in conditions of vegetation density and that there are valuable satellite observed SSM data records over more than 10 years, which can be used to study land-atmosphere processes
International audienceGlobal surface soil moisture (SSM) datasets are being produced based on active and passive microwave satellite observations and simulations from land surface models (LSM). This study investigates the consistency of two global satellite-based SSM datasets based on microwave remote sensing observations from the passive Soil Moisture and Ocean Salinity (SMOS; SMOSL3 version 2.5) and the active Advanced Scatterometer (ASCAT; version TU-Wien-WARP 5.5) with respect to LSM SSM from the MERRA-Land data product. The relationship between the global-scale SSM products was studied during the 2010-2012 period using (1) a time series statistics (considering both original SSM data and anomalies), (2) a space-time analysis using Hovmöller diagrams, and (3) a triple collocation error model. The SMOSL3 and ASCAT retrievals are consistent with the temporal dynamics of modeled SSM (correlation R > 0.70 for original SSM) in the transition zones between wet and dry climates, including the Sahel, the Indian subcontinent, the Great Plains of North America, eastern Australia, and south-eastern Brazil. Over relatively dense vegetation covers, a better consistency with MERRA-Land was obtained with ASCAT than with SMOSL3. However, it was found that ASCAT retrievals exhibit negative correlation versus MERRA-Land in some arid regions (e.g., the Sahara and the Arabian Peninsula). In terms of anomalies, SMOSL3 better captures the short term SSM variability of the reference dataset (MERRA-Land) than ASCAT over regions with limited radio frequency interference (RFI) effects (e.g., North America, South America, and Australia). The seasonal and latitudinal variations of SSM are relatively similar for the three products, although the MERRA-Land SSM values are generally higher and their seasonal amplitude is much lower than for SMOSL3 and ASCAT. Both SMOSL3 and ASCAT have relatively comparable triple collocation errors with similar spatial error patterns: (i) lowest errors in arid regions (e.g., Sahara and Arabian Peninsula), due to the very low natural variability of soil moisture in these areas, and Central America, and (ii) highest errors over most of the vegetated regions (e.g., northern Australia, India, central Asia, and South America). However, the ASCAT SSM product is prone to larger random errors in some regions (e.g., north-western Africa, Iran, and southern South Africa). Vegetation density was found to be a key factor to interpret the consistency with MERRA-Land between the two remotely sensed products (SMOSL3 and ASCAT) which provides complementary information on SSM. This study shows that both SMOS and ASCAT have thus a potential for data fusion into long-term data records
Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a remote sensing tool, which is complementary to traditional monostatic radars, for the retrieval of geophysical parameters related to surface properties. In the present paper, we describe a new polarimetric GNSS-R system, referred to as the GLObal navigation satellite system Reflectometry Instrument (GLORI), dedicated to the study of land surfaces (soil moisture, vegetation water content, forest biomass) and inland water bodies. This system was installed as a permanent payload on a French ATR42 research aircraft, from which simultaneous measurements can be carried out using other instruments, when required. Following initial laboratory qualifications, two airborne campaigns involving nine flights were performed in 2014 and 2015 in the Southwest of France, over various types of land cover, including agricultural fields and forests. Some of these flights were made concurrently with in situ ground truth campaigns. Various preliminary applications for the characterisation of agricultural and forest areas are presented. Initial analysis of the data shows that the performance of the GLORI instrument is well within specifications, with a cross-polarization isolation better than −15 dB at all elevations above 45°, a relative polarimetric calibration accuracy better than 0.5 dB, and an apparent reflectivity sensitivity better than −30 dB, thus demonstrating its strong potential for the retrieval of land surface characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.