Prosthecae removed from cells of Asticcacaulis biprosthecum were examined for their ability to accumulate proline, alanine, aspartate, glutamate, and glucose against a concentration gradient. The transport of all of these compounds into prosthecae was stimulated by the nonphysiological electron donors phenazine methosulfate and N,N,N',N'-tetramethyl-p-phenylene diamine dihydrochloride. Reduced pyridine nucleotides caused very slight stimulation of transport of proline and glucose. Other physiological electron donors did not stimulate uptake. Evidence is presented indicating that the failure of certain potential electron donors to drive respiratory chain-linked transport is due to the inability of these compounds to enter prosthecae rather than to the absence of enzymes for their oxidation in prosthecae. Inhibition of respiration and uncouplers of oxidative phosphorylation, with the exception of arsenate, inhibit active transport systems of prosthecae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.