We study a class of reinforcement learning tasks in which the agent receives its reward for complex, temporally-extended behaviors sparsely. For such tasks, the problem is how to augment the state-space so as to make the reward function Markovian in an efficient way. While some existing solutions assume that the reward function is explicitly provided to the learning algorithm (e.g., in the form of a reward machine), the others learn the reward function from the interactions with the environment, assuming no prior knowledge provided by the user. In this paper, we generalize both approaches and enable the user to give advice to the agent, representing the user’s best knowledge about the reward function, potentially fragmented, partial, or even incorrect. We formalize advice as a set of DFAs and present a reinforcement learning algorithm that takes advantage of such advice, with optimal con- vergence guarantee. The experiments show that using well- chosen advice can reduce the number of training steps needed for convergence to optimal policy, and can decrease the computation time to learn the reward function by up to two orders of magnitude.
Temporal logic inference is the process of extracting formal descriptions of system behaviors from data in the form of temporal logic formulas. The existing temporal logic inference methods mostly neglect uncertainties in the data, which results in limited applicability of such methods in real-world deployments. In this paper, we first investigate the uncertainties associated with trajectories of a system and represent such uncertainties in the form of interval trajectories. We then propose two uncertaintyaware signal temporal logic (STL) inference approaches to classify the undesired behaviors and desired behaviors of a system. Instead of classifying finitely many trajectories, we classify infinitely many trajectories within the interval trajectories. In the first approach, we incorporate robust semantics of STL formulas with respect to an interval trajectory to quantify the margin at which an STL formula is satisfied or violated by the interval trajectory. The second approach relies on the first learning algorithm and exploits the decision tree to infer STL formulas to classify behaviors of a given system. The proposed approaches also work for non-separable data by optimizing the worst-case robustness in inferring an STL formula. Finally, we evaluate the performance of the proposed algorithms in two case studies, where the proposed algorithms show reductions in the computation time by up to four orders of magnitude in comparison with the sampling-based baseline algorithms (for a dataset with 800 sampled trajectories in total).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.